

Introduction to Longitudinal Data Structure and Visualisation Nicolás Libuy, <u>nicolas.libuy@ucl.ac.uk</u> Darío Moreno-Agostino, <u>d.moreno@ucl.ac.uk</u>

CENTRE FOR LONGITUDINAL STUDIES

Economic and Social Research Council

Thanks to our funders and host institution

Economic and Social Research Council

Funded by www.esrc.ukri.org Hosted by www.ucl.ac.uk

Outline for today

_

Time	Duration	What
12:00-12:05	5m	Welcome & introduction
12:05-12:15	10m	What is longitudinal data?
12:15-12:55	40m	Data structure with demonstration in Stata (incl. Q&A)
12:55-13:00	5m	Break
13:00-14:00	60m	Data visualization with demonstration in Stata (incl. Q&A)
14:00-14:30	30m	Extended Q&A session

Housekeeping

- Please keep your cameras off and mics muted at all times.
- If you have a question, please use the chat function, and please note your question will be visible to all attendees.
- Technical issues please email us: ioe.clsevents@ucl.ac.uk
- We would be grateful for your feedback. Please follow the link in the chat and complete the short survey at the end.
- We are recording today's event.
- We will remove from the video any participant names to protect privacy.

Thank you for joining us today.

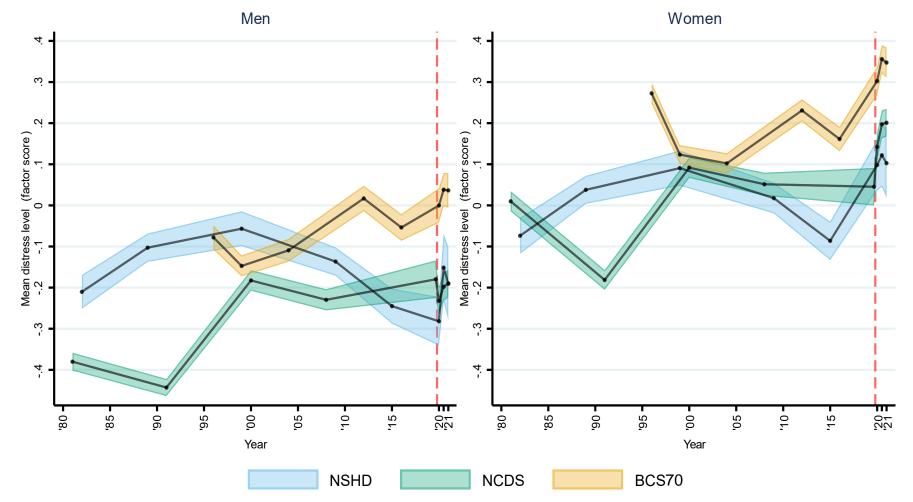
What is longitudinal data?

CENTRE FOR LONGITUDINAL STUDIES


Economic and Social Research Council

Longitudinal data

- Data collected over time **within the same units** (individuals, households...)
 - Describe and visualise trajectories
 - Compare developmental growth / change over time


Figure 1: Mothers and fathers' employment patterns (%) in the 3 years after birth

Source: Harkness et al 2019 Employment pathways and occupational change after childbirth https://dera.ioe.ac.uk//34421/

CENTRE FOR LONGITUDINAL STUDIES

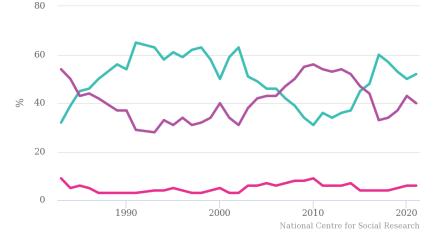
Figure 2. Inequalities across women and men in disruption of long-term trajectories of psychological distress with COVID-19 pandemic

Source: Moreno-Agostino et al 2023, Long-term psychological distress trajectories and the COVID-19 pandemic in three British birth cohorts: A multi-cohort study. <u>https://doi.org/10.1371/journal.pmed.1004145</u>

Longitudinal data

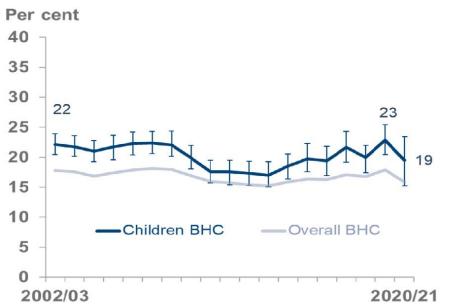
- Data collected over time within the same units (individuals, households...)
 - Describe and visualise trajectories
 - Compare developmental growth / change over time

As opposed to what?

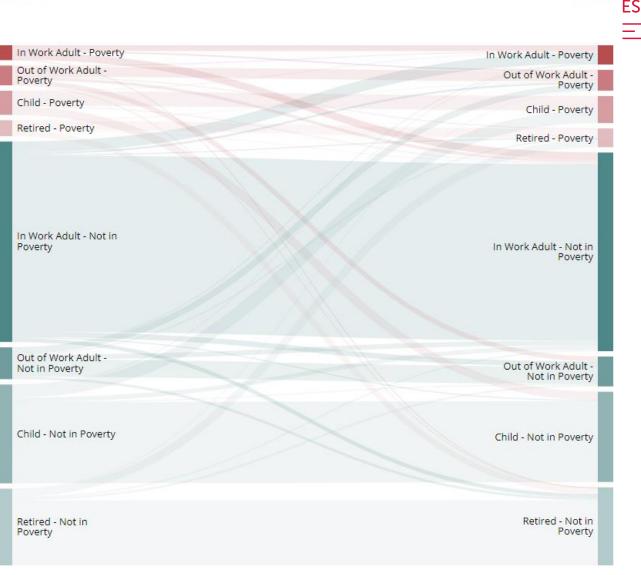

Repeated cross-sectional data

- Data collected over time across different units
- Macro-level trends (e.g., in prevalence)...

Attitudes towards taxation and spending on health, education and social benefits, 1983-2021 Source: British Social Attitudes


- Increase taxes and spend more on health, education and social benefi
- Keep taxes and spending on these services at the same level it is now
- Reduce taxes and spend less on health, education and social benefits

https://www.bsa.natcen.ac.uk/latest-report/british-socialattitudes-39/taxation-welfare-and-inequality.aspx


Children in Low Income Households

Source: Households Below Average Income series, Family Resources Survey

https://www.gov.uk/government/statistics/households-below-average-income-for-financial-years-ending-1995-to-2021

... but can't capture micro-level (individual) change & transitions

CENTRE FOR 2017 |TUDINAL

Source: Office for National Statistics https://www.ons.gov.uk/visualisations/dvc617/sankey/

Longitudinal data

- Data collected over time within the same units (individuals, households...)
 - Describe and visualise trajectories
 - Compare developmental growth / change over time
 - Sometimes, same measures over time (but sometimes need harmonisation/linking approaches)

CLS

CLS Cohort Studies

Data Note 2011/1

Centre for Longitudinal Studies

Deriving Highest Qualification in NCDS and BCS70

Brian Dodgeon and Samantha Parsons

Centre for Longitudinal Studies Institute of Education 20 Bedford Way London WC1H 0AL Tel: 020 7612 6860 Fax: 020 7612 6880 Email cls@ioe.ac.uk Web http://www.cls.ioe.ac.uk Resource report

Harmonisation and measurement properties of mental health measures in six British cohorts

The home of longitudinal research

Eoin McElroy¹, Aase Villadsen¹, Praveetha Patalay^{1, 2}, Alissa Goodman¹, Marcus Richards², Kate Northstone³, Pasco Fearon⁴, Marc Tibber⁴, Dawid Gondek¹, George B. Ploubidis¹

³ Centre for Longttudinal Studies, University College London
 ² MRC Unit for Lifelong Health and Ageing, University College London
 ³ MRC Integrative Epidemiology Unit, University of Bristol
 ⁴ Faculty of Brain Sciences, University College London

Eeenemie and Social Research Cou

Longitudinal data

- Data collected over time within the same units (individuals, households...)
 - Describe and visualise trajectories
 - Compare developmental growth / change over time
 - Sometimes, same measures over time (but sometimes need harmonisation/linking approaches)
 - Designs can vary on multiple aspects (duration, frequency of repeated assessments, number of cohorts...)

Different types of data

- Cross-sectional: multiple variables in a single time-point
- Time-series: single variable in multiple time-points
- Panel: multiple variables in multiple-time points

Longitudinal data

CLS cohort studies

1958 National Child Development Study

Following the lives of 17,000 people born in a single week in 1958 in Great Britain.

1970 British Cohort Study

Following the lives of 17,000 people born in a single week in 1970 in Great Britain.

Next Steps

Following the lives of 16,000 people in England born in 1989-90.

Millennium Cohort Study

The most recent of Britain's cohort studies, following 19,000 young people born in the UK at the start of the new century.

CLS cohort studies: Typical content

Infant Child **Adult** ß Household composition Household composition Household composition Parental social class Parental social class **Social Class** Parental employment Employment Birth history **Financial circumstances Pregnancy & labour** Income **Birth outcomes** Housing Housing **Relationships & children** Health Getting started: An introduction Health & Mental health Cognitive tests to four British cohort studies Training & qualifications **Emotions & behaviour** 15 This 90-minute session gives first-time users an overview of the 1958, 1970, School experience & Cognitive tests Nov Next Steps and millennium cohort studies - unique data resources available 2023 for researchers across the biomedical and social sciences attainment Attitudes & expectations Attitudes & expectations

Different types of data

- Cross-sectional: multiple variables in a single time-point
- Time-series: single variable in multiple time-points
- Panel: multiple variables in multiple-time points

Data structure with demonstration in Stata

CENTRE FOR LONGITUDINAL STUDIES

Economic and Social Research Council

Applied example for this session: MCS

	Following the people born in 1958 in G	nent Stud ne lives of 17 n in a single	ly 7,000 week	Stud Follow peopl	1970 British Cohort Study Following the lives of 17,000 people born in a single week in 1970 in Great Britain.		Follov	Next Steps Following the lives of 16,000 people in England born in 1989-90.		Millennium Cohort Study The most recent of Britain's cohort studies, following 19,000 young people born in the UK at the start of the new century.		
L	Year	2001	2004	2006	2008	2012	2015	2018	2023			
	Age	9 months	3	5	7	11	14	17	23			

Important notes!

- Simplified examples:
 - Survey features (clustering, survey weights) <u>have been ignored</u>
 - Only first cohort member of the family or singletons between sweeps 1-7 (ages 9 months to 17 years)
- Although all data shown is anonymous, we have also changed the IDs in the files
- Very helpful documentation \rightarrow

https://doc.ukdataservice.ac.uk/doc/4683/mrdoc/pdf/ mcs_data_handling_guide_ed1_2020-08-10.pdf

	LONGITUDINAL
Institute of Education	
Millennium Co	hort Study
Data Handling Gu with syntax in R, S	
August 2020	
CENTRE FOR LONGITUDINAL STUDIES	Economic and Social Research Council

CENITRE FOR

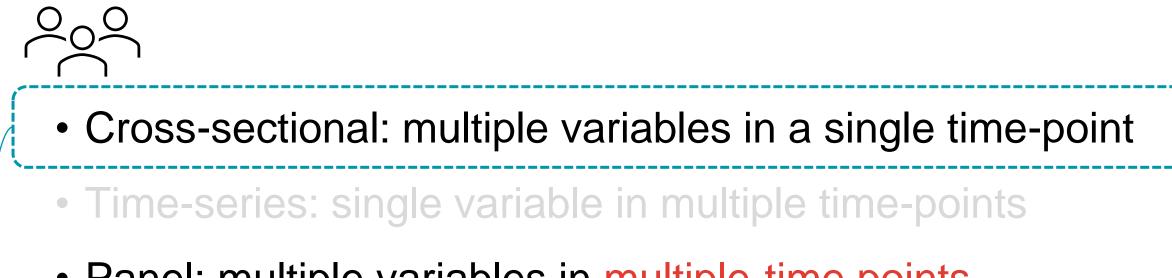
Millennium Cohort Study

Access data Abstract FAQ's Resources

Access data

GN 33359 Millennium Cohort Study – Survey and Biomeasures Data

https://beta.ukdataservice.ac.uk/da
tacatalogue/series/series?id=2000
031#!/access-data


SN	Study description	Explore online	Select
8756	<u>Millennium Cohort Study, Sweeps 1-7, 2001-2019: Exact</u> <u>Participation Dates: Secure Access</u>		
8755	Millennium Cohort Study, Sweeps 1-7, 2001-2019: Demographics, Language and Religion: Secure Access		
8754	Millennium Cohort Study, Sweeps 1-7, 2001-2019: Self-Reported Health, Behaviour and Fertility: Secure Access		
8753	<u>Millennium Cohort Study, Sweeps 1-7, 2001-2019: Socio-</u> <u>Economic, Accommodation and Occupational Data: Secure Access</u>		
8682	Millennium Cohort Study: Age 17, Sweep 7, 2018		
8172	Millennium Cohort Study: Sweeps 1-7, 2001-2018: Longitudinal Family File		
8156	Millennium Cohort Study: Age 14, Sweep 6, 2015		
7464	<u>Millennium Cohort Study: Age 11, Sweep 5, 2012</u>		
7261	<u>Millennium Cohort Study: Age 9 months, Sweep 1, 2001-2003:</u> <u>Health Visitor Survey</u>		
7238	Millennium Cohort Study: Age 7, Sweep 4, 2008: Physical Activity		
6411	Millennium Cohort Study: Age 7, Sweep 4, 2008		
5795	<u>Millennium Cohort Study: Age 5, Sweep 3, 2006</u>		
5559	Millennium Cohort Study: Age 9 months, Sweep 1, 2003: Survey of Mothers who Received Assisted Fertility Treatment		
5350	<u>Millennium Cohort Study: Age 3, Sweep 2, 2004</u>		
4683	Millennium Cohort Study: Age 9 months, Sweep 1, 2001		

CENTRE FOR LONGITUDINAL **STUDIES**

Different types of data

Panel: multiple variables in multiple-time points

Deposited data may be "cross-sectional" (by sweep)

Millennium Cohort Study

Abstract FAQ's Resources Access data

Access data

GN 33359 Millennium Cohort Study – Survey and Biomeasures Data

https://beta.ukdataservice.ac.uk/da
tacatalogue/series/series?id=2000
031#!/access-data

SN	Study description	Explore online	Select
8756	Millennium Cohort Study, Sweeps 1-7, 2001-2019: Exact Participation Dates: Secure Access		
8755	Millennium Cohort Study, Sweeps 1-7, 2001-2019: Demographics, Language and Religion: Secure Access		
8754	Millennium Cohort Study, Sweeps 1-7, 2001-2019: Self-Reported Health, Behaviour and Fertility: Secure Access		
8753	Millennium Cohort Study, Sweeps 1-7, 2001-2019: Socio- Economic, Accommodation and Occupational Data: Secure Access		
8682	Millennium Cohort Study: Age 17, Sweep 7, 2018		
8172	Millennium Cohort Study: Sweeps 1-7, 2001-2018: Longitudinal Family File		
8156	Millennium Cohort Study: Age 14, Sweep 6, 2015		
7464	Millennium Cohort Study: Age 11, Sweep 5, 2012		
7261	<u>Millennium Cohort Study: Age 9 months, Sweep 1, 2001-2003:</u> <u>Health Visitor Survey</u>		
7238	Millennium Cohort Study: Age 7, Sweep 4, 2008: Physical Activity		
6411	Millennium Cohort Study: Age 7, Sweep 4, 2008		
5795	Millennium Cohort Study: Age 5, Sweep 3, 2006		
5559	Millennium Cohort Study: Age 9 months, Sweep 1, 2003: Survey of Mothers who Received Assisted Fertility Treatment		
5350	Millennium Cohort Study: Age 3, Sweep 2, 2004		
4683	Millennium Cohort Study: Age 9 months, Sweep 1, 2001		

CENTRE FOR LONGITUDINAL STUDIES

- Need to find the variable (or set of variables) that uniquely identify the individual (unit)
- Unique identifier: e.g., NCDSID, BCSID, NSID, MCSID *
 - MCSID is the identifier of the family!
 - In the examples, due to focus on first cohort member of the family or singleton births, MCSID is unique to the individual

-	

📓 mcs1_cm_derived.dta

mcs2_cm_derived.dta
 mcs3_cm_derived.dta
 mcs4_cm_derived.dta
 mcs5_cm_derived.dta
 mcs6_cm_derived.dta

💼 mcs7_cm_derived.dta

	MCSID	ACNUMØØ	ACNOBAØØ
1	11985	1st Cohort Member of the family	One baby
2	11986	1st Cohort Member of the family	One baby
3	11991	1st Cohort Member of the family	One baby
4	11992	1st Cohort Member of the family	Twins
5	11992	2nd Cohort Member of the family	Twins
6	11995	1st Cohort Member of the family	One baby
7	11998	1st Cohort Member of the family	One baby
8	11999	1st Cohort Member of the family	One baby

. isid MCSID

variable MCSID does not uniquely identify the observations r(459);

. isid MCSID ACNUM00

/	

📓 mcs1_cm_derived.dta

mcs2_cm_derived.dta
 mcs3_cm_derived.dta
 mcs4_cm_derived.dta
 mcs5_cm_derived.dta
 mcs6_cm_derived.dta
 mcs7_cm_derived.dta

	MCSID	ACNUMØØ	ACNOBA00
1	11985	1st Cohort Member of the family	One baby
2	11986	1st Cohort Member of the family	One baby
3	11991	1st Cohort Member of the family	One baby
4	11992	1st Cohort Member of the family	Twins
5	11992	2nd Cohort Member of the family	Twins
6	11995	1st Cohort Member of the family	One baby
7	11998	1st Cohort Member of the family	One baby
8	11999	1st Cohort Member of the family	One baby

. keep if ACNUM00 == 1
(246 observations deleted)

. isid MCSID

CENTRE FOR LONGITUDINAL STUDIES

Merging datasets

Only first cohort members

 \rightarrow

Variables

💼 mcs1_cm_derived_first.dta -----

Kilter variables	Filter variables here				
✓ Name	Label				
MCSID	MCS Research pseudo-ID - Anonymised Family/House				
ACNUM00	Cohort Member number within an MCS family				
ACNOBA00	Number of CMs in household				
ADCEEA00_R30	DV Cohort Member Ethnic Group merged (England) [
ADCEWA00_R30	DV Cohort Member Ethnic Group (merged) (Wales) [
ADCESA00_R30	DV Cohort Member Ethnic Group (merged) (Scotland)				
ADCENA00_R30	DV Cohort Member Ethnic Group (merged) (N Ireland)				
ADC06E00	DV Cohort Member Ethnic Group - 6 category Census				
ADC11E00	DV Cohort Member Ethnic Group - 11 category Census				
ADC08E00	DV Cohort Member Ethnic Group - 8 category classific				
ADBWGT00	DV Cohort Member birth weight in kilos				
ADERLT00	DV Birth of Cohort Member: Number of days early or I				
ADGEST00	DV Cohort Member Gestation time in days				
ADLSTW00	DV Cohort Member most recent weight in kilos				
ADAGLW00	DV Cohort Member Age post-term in days when last				

CENTRE FOR LONGITUDINAL STUDIES

Merging datasets

Only first cohort members

Variables

mcs2_cm_derived_first.dta _____

Filter variables here	
✓ Name	Label
MCSID	MCS Research pseudo-ID - Anonymised Family/House
BCNUM00	Cohort Member number within an MCS family
BDNOBA00	Number of CMs in household
BDCEEA00_R30	DV Cohort Member Ethnic Group (England) - new fam
BDC06E00	DV Cohort Member Ethnic Group - 6 category Census
BDC11E00	DV Cohort Member Ethnic Group - 11 category Census
BDC08E00	DV Cohort Member Ethnic Group - 8 category classific
BDCEWA00_R30	DV Cohort Member Ethnic Group (merged) (Wales) [
BDCESA00_R30	DV Cohort Member Ethnic Group (merged) (Scotland
BDCSBI00	Child Social Behaviour Questionnaire (Independence
BDCSBE00	Child Social Behaviour Questionnaire (Emotional-Dysr
BDMPIA00	DV CM Child-Parent Relationship Scale (CPRS) MAIN
BDMVLD00	DV CM CPRS Number of valid responses (max 15) MAI
BDMMPT00	DV CM CPRS Number of imputed responses (max 3)
BDPPIA00	DV CM Child-Parent Relationship Scale (CPRS) PARTN

Only first cohort members

mcs1_cm_derived_first.dta ------ Open (this is now the master -- or active- dataset)

mcs2_cm_derived_first.dta — This is the using dataset (a.k.a.: the dataset we want to merge to the *master* or active one)

Only first cohort members

💼 mcs2_cm_derived_first.dta —

mcs1_cm_derived_first.dta ------ Open (this is now the master -- or active- dataset)

This is the *using* dataset (a.k.a.: the dataset we want to merge to the *master* or active one)

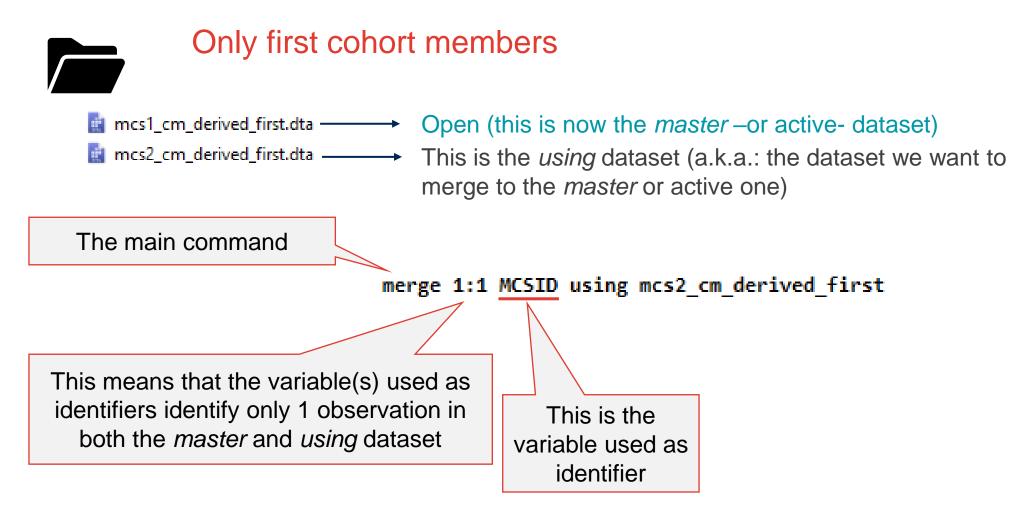
The main command

merge 1:1 MCSID using mcs2 cm derived first

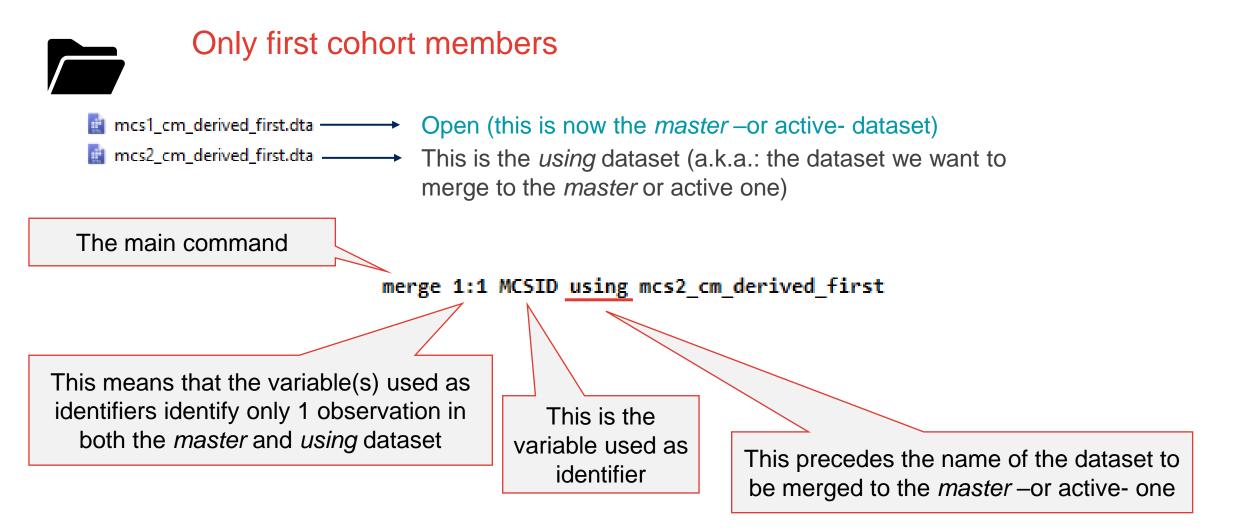
Only first cohort members

mcs1_cm_derived_first.dta ______
mcs2_cm_derived_first.dta ______

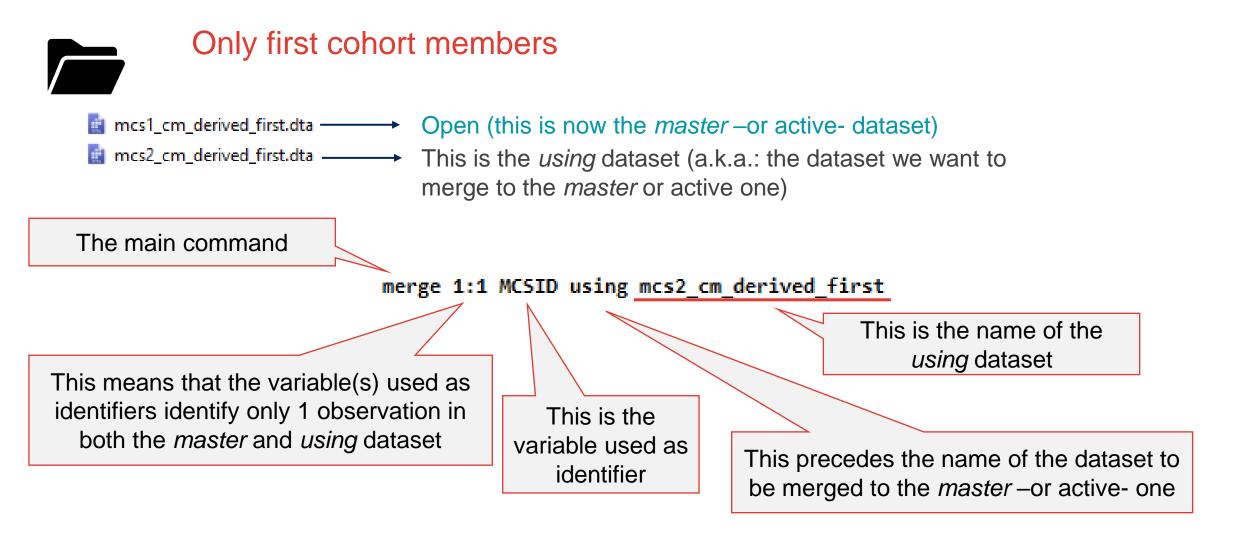
• Open (this is now the *master* –or active- dataset)


 This is the using dataset (a.k.a.: the dataset we want to merge to the master or active one)

The main command


merge 1:1 MCSID using mcs2_cm_derived_first

This means that the variable(s) used as identifiers identify only 1 observation in both the *master* and *using* dataset



Merging datasets

Only first cohort members

mcs1_cm_derived_first.dta ______ mcs2_cm_derived_first.dta ______

• Open (this is now the *master* –or active- dataset)

 This is the using dataset (a.k.a.: the dataset we want to merge to the master or active one)

Observations that have <u>not</u> been matched (present only in the *master* or *using* datasets)

Observations that have been matched (present both in the *master* and *using* datasets)

```
merge 1:1 MCSID using mcs2_cm_derived_first

Result Number of obs

Not matched 4,343

from master 3,652

from using 691

Matched 14,888
```

Unless instructed <u>not</u> to do so (with the option *nogenerate*), Stata will create a variable flagging the result of the merge

(merge==1)

(merge==2)

(merge==3)

CENTRE FOR LONGITUDINAL STUDIES

Merging datasets

Merged dataset contains variables from both datasets, stored under the same MCSID

If needed, this dataset can be saved

Variables

K Filter variables	here
✓ Name	Label
MCSID	MCS Research pseudo-ID - Anonymised Family/House
ACNUM00	Cohort Member number within an MCS family
ACNOBA00	Number of CMs in household
ADCEEA00_R30	DV Cohort Member Ethnic Group merged (England) [
ADCEWA00_R30	DV Cohort Member Ethnic Group (merged) (Wales) [
ADCESA00_R30	DV Cohort Member Ethnic Group (merged) (Scotland)
ADCENA00_R30	DV Cohort Member Ethnic Group (merged) (N Ireland)
ADC06E00	DV Cohort Member Ethnic Group - 6 category Census
ADC11E00	DV Cohort Member Ethnic Group - 11 category Census
ADC08E00	DV Cohort Member Ethnic Group - 8 category classific
ADBWGT00	DV Cohort Member birth weight in kilos
ADERLT00	DV Birth of Cohort Member: Number of days early or I
ADGEST00	DV Cohort Member Gestation time in days
ADLSTW00	DV Cohort Member most recent weight in kilos
ADAGLW00	DV Cohort Member Age post-term in days when last
BCNUM00	Cohort Member number within an MCS family
BDNOBA00	Number of CMs in household
BDCEEA00_R30	DV Cohort Member Ethnic Group (England) - new fam

Merging datasets

mcs1_cm_derived_first.dta
 mcs2_cm_derived_first.dta
 mcs3_cm_derived_first.dta
 mcs4_cm_derived_first.dta
 mcs5_cm_derived_first.dta
 mcs6_cm_derived_first.dta
 mcs7_cm_derived_first.dta

Note:

- The dataset has one row per individual
- Variables from different waves are denoted by the starting letter (this may be different in other scenarios)
- May need to rename variables before merging if they have the same name in both master and using datasets

save mcs_cm_derived_first_wide, replace

'wide' layout

CENTRE FOR LONGITUDINAL STUDIES

Longitudinal data layout: wide vs long

- Wide (or unstacked):
 - Single row per unit
 - Observations from different time points denoted with different names (e.g., bmi5, bmi7, bmi11...)

ID	var1 _t1	var2 _t1	 var1 _t2	var2 _t2	 var1 _t3	var2 _t3	
1							
2							
3							

Longitudinal data layout: wide vs long

- Wide (or unstacked):
 - Single row per unit
 - Observations from different time points denoted with different names (e.g., bmi5, bmi7, bmi11...)

ID	var1 _t1	var2 _t1	 var1 _t2	var2 _t2	 var1 _t3	var2 _t3	
1							
2							
3							

- Long (or stacked or narrow):
 - Multiple rows per unit
 - Time is a variable (e.g., age = 5, 7, 11...)

ID	time	var1	var2	
1	1			
1	2			
1				
2	1			
2	2			
2				
3	1			
3	2			
3				

Longitudinal data layout: wide

mcs_cm_derived_first_wide.dta		MCSID	BEMOTION	CEMOTION	DDEMOTION	FEMOTION	GEMOTION
	1	11985	4	3	4		
browse MCSID BEMOTION CEMOTION	2	11986	2	2	1	4	2
DDEMOTION FEMOTION GEMOTION	3	11991	0	1	0	2	1
	4	11992	1				
	5	11995	2	1	1		
	6	11998	0				
	7	11999	1	3	3	2	3

- One row per unit (in this case, individual)
- Repeated assessments of the same variables (e.g., parent-reported emotional subscale of the SDQ questionnaire, range: 0 [minimum] – 10 [maximum]) denoted by different names
 - Often variable names in panel studies contain a letter or number denoting the wave; if not, may want to include it before merging
- · 'Wide', 'unstacked'

Harmonised Height, Weight and BMI in Five Longitudinal Cohort Studies: Millennium Cohort Study

Details Documentatio	n Resources Access data
Details	~
Title:	Harmonised Height, Weight and BMI in Five Longitudinal Cohort Studies: Millennium Cohort Study
Alternative title:	CLOSER Work Package 1; MCS
Study number (SN):	8550
Access:	These data are <u>safeguarded</u>
Persistent identifier (DOI):	10.5255/UKDA-SN-8550-1
Series:	CLOSER
Data creator(s):	Cohort and Longitudinal Studies Enhancement Resources

 Harmonised data from multiple sweeps

https://beta.ukdataservice.ac.uk/data catalogue/studies/study?id=8550

		mcsid	visitage	sex	bmi
	1	11985	0	Female	
mcs_closer_wp1.dta	2	11985	1	Female	
	3	11985	3	Female	16.9
browse mcsid visitage sex bmi	4	11985	5	Female	16.2
	5	11985	7	Female	15.61
	6	11985	11	Female	
	7	11986	0	Male	
	8	11986	1	Male	
	9	11986	3	Male	17.72
	10	11986	5	Male	15.72
	11	11986	7	Male	17.32
	12	11986	11	Male	20.3
	13	11991	0	Male	
	14	11991	1	Male	
	15	11991	3	Male	18.55
	16	11991	5	Male	18.17
	17	11991	7	Male	15.92
	18	11991	11	Male	17.01

 Units (individuals) have multiple rows

CENTRE FOR LONGITUDINAL

STUDIES

• 'Long', 'stacked', 'narrow'

	mcsid	visitage	sex	bmi
1	11985	0	Female	
2	11985	1	Female	
3	11985	3	Female	16.9
4	11985	5	Female	16.2
5	11985	7	Female	15.61
6	11985	11	Female	
7	11986	0	Male	
8	11986	1	Male	
9	11986	3	Male	17.72
10	11986	5	Male	15.72
11	11986	7	Male	17.32
12	11986	11	Male	20.3
13	11991	0	Male	
14	11991	1	Male	
15	11991	3	Male	18.55
16	11991	5	Male	18.17
17	11991	7	Male	15.92
18	11991	11	Male	17.01

Time <i>is a variable

Year	2001	2004	2006	2008	2012	2015	2018	2023	
Age	9 months	3	5	7	11	14	17	23	

	mcsid	visitage	sex	bmi
1	11985	e) Female	
2	11985	1	. Female	
3	11985	3	Female	16.9
4	11985	5	Female	16.2
5	11985	7	/ Female	15.61
6	11985	11	. Female	
7	11986	e	Male	
8	11986	1	. Male	
9	11986	3	Male	17.72
10	11986	5	Male	15.72
11	11986	7	Male	17.32
12	11986	11	. Male	20.3
13	11991	e	Male	
14	11991	1	. Male	
15	11991	3	Male	18.55
16	11991	5	Male	18.17
17	11991	7	' Male	15.92
18	11991	11	. Male	17.01

Time <u>is</u> a		9 months	2001				
Year	2001	2004	2006	2008	1	ω	2004
Age	9 months	3	5	7		G	2006
						7	2008
						≓	2012
						14	2015
						17	2018

Year		CENTRE FC LONGITUD STUDIES	
2001			
2004	2018	2023	
2006	17	23	

Age

	mcsid	visitage	sex	bmi
1	11985	0	Female	
2	11985	1	Female	
3	11985	3	Female	16.9
4	11985	5	Female	16.2
5	11985	7	Female	15.61
6	11985	11	Female	
7	11986	0	Male	
8	11986	1	Male	
9	11986	3	Male	17.72
10	11986	5	Male	15.72
11	11986	7	Male	17.32
12	11986	11	Male	20.3
13	11991	0	Male	
14	11991	1	Male	
15	11991	3	Male	18.55
16	11991	5	Male	18.17
17	11991	7	Male	15.92
18	11991	11	Male	17.01

<u>Time-invariant variables</u>

Sex assigned at birth (as binary variable)

	mcsid	visitage	sex	bmi
1	11985	0	Female	
2	11985	1	Female	
3	11985	3	Female	16.9
4	11985	5	Female	16.2
5	11985	7	Female	15.61
6	11985	11	Female	
7	11986	0	Male	•
8	11986	1	Male	
9	11986	3	Male	17.72
10	11986	5	Male	15.72
11	11986	7	Male	17.32
12	11986	11	Male	20.3
13	11991	0	Male	•
14	11991	1	Male	
15	11991	3	Male	18.55
16	11991	5	Male	18.17
17	11991	7	Male	15.92
18	11991	11	Male	17.01

Time-varying variables

3 repeated observations

4 repeated observations

4 repeated observations

Examples using <u>wide</u> layout

💼 mcs_cm_derived_first_wide.dta

- summarize variables from multiple time-points
 - . sum BEMOTION CEMOTION DDEMOTION FEMOTION GEMOTION

Variable	Obs	Mean	Std. dev.	Min	Max
BEMOTION	15,579	1.254188	1.573782	-1	10
CEMOTION	15,236	1.315371	1.636546	-1	10
DDEMOTION	13,847	1.463277	1.800602	-1	10
FEMOTION	11,717	1.947768	2.17288	-1	10
GEMOTION	10,831	1.606961	2.335044	-1	10

recode multiple variables that require the same recoding

. recode BEMOTION CEMOTION DDEMOTION FEMOTION GEMOTION (-1 = .)

(846 changes made to **BEMOTION**)

(519 changes made to **CEMOTION**)

(414 changes made to DDEMOTION)

(388 changes made to FEMOTION)

(1,560 changes made to **GEMOTION**)

. sum BEMOTION CEMOTION DDEMOTION FEMOTION GEMOTION

Variable	Obs	Mean	Std. dev.	Min	Max
BEMOTION	14,733	1.383629	1.520021	0	10
CEMOTION	14,717	1.397024	1.605305	0	10
DDEMOTION	13,433	1.539195	1.774631	0	10
FEMOTION	11,329	2.048725	2.138997	0	10
GEMOTION	9,271	2.045626	2.243622	0	10

- rename multiple variables
 - . rename (BEMOTION CEMOTION DDEMOTION FEMOTION GEMOTION) (EMOTION3 EMOTION5 EMOTION7
 - > EMOTION14 EMOTION17)
 - . sum EMOTION*

Variable	Obs	Mean	Std. dev.	Min	Max
EMOTION3	14,733	1.383629	1.520021	0	10
EMOTION5	14,717	1.397024	1.605305	0	10
EMOTION7	13,433	1.539195	1.774631	0	10
EMOTION14	11,329	2.048725	2.138997	0	10
EMOTION17	9,271	2.045626	2.243622	0	10

Examples using <u>wide</u> layout

• generate variables that are conditional on variables from multiple time-points

```
. gen flag = 1 if EMOTION3 != . & EMOTION5 != .
(6,386 missing values generated)
```

. tab flag, mis

Cum.	Percent	Freq.	flag
66.79	66.79	12,845	1
100.00	33.21	6,386	
	100.00	19,231	Total

	MCSID	EMOTION3	EMOTION5	flag
1	11985	4	3	1
2	11986	2	2	1
3	11991	0	1	1
4	11992	1		
5	11995	2	1	1
6	11998	0		

- Obtain correlations across variables over time
 - . pwcorr EMOTION*

	EMOTION3	EMOTION5	EMOTION7	EMOTI~14	EMOTI~17
EMOTION3	1.0000				
EMOTION5	0.4212	1.0000			
EMOTION7	0.3503	0.5135	1.0000		
EMOTION14	0.2343	0.3322	0.4081	1.0000	
EMOTION17	0.1890	0.2677	0.3231	0.5677	1.0000

- summarize all the repeated observations of the same variable (e.g., grand mean)
 - . sum bmi

Variable	Obs	Mean	Std. dev.	Min	Max
bmi	44,468	17.22816	2.616493	7.3	61.72

• summarize the repeated observations by time-point

```
. tabstat bmi, by(visitage)
```

Summary for variables: bmi Group variable: visitage (Age at visit/interview)

visitage	Mean
0	•
3	16.86595
5 7	16.38981 16.66427
11	19.21847
Total	17.22816

• recode the repeated observations of the same variable

```
recode bmi ///
  (min/24.9 = 0 "BMI below 25") ///
  (25/29.9 = 1 "BMI between 25-29.9") ///
  (30/max = 2 "BMI 30+"), ///
  gen(bmi cat)
```

. tab bmi_cat

RECODE of bmi (Body mass index (kg/m2))	Freq.	Percent	Cum.
BMI below 25 BMI between 25-29.9 BMI 30+	43,553 788 127	97.94 1.77 0.29	97.94 99.71 100.00
Total	44,468	100.00	

• tabulate across time-points

. tab visitage bmi_cat

Age at visit/inte rview	RECODE of BMI below	bmi (Body (kg/m2)) BMI betwe	mass index BMI 30+	Total
1.016M	BHI DEIOW	DHI DECWE	-00 TH	TOCAL
3	11,319	26	6	11,351
5	11,926	30	4	11,960
7	10,863	80	8	10,951
11	9,445	652	109	10,206
Total	43,553	788	127	44,468

• generate new time variables

. tab visitage if bmi != .

visi	Age at t/inter view	Freq.	Percent	Cum.
	3	11,351	25.53	25.53
	5	11,960	26.90	52.42
	7	10,951	24.63	77.05
	11	10,206	22.95	100.00
	Total	44,468	100.00	

- generate new time variables
 - . gen visityear = visitage + 2001
 - . tab visityear if bmi != .

visityear	Freq.	Percent	Cum.
2004	11,351	25.53	25.53
2006	11,960	26.90	52.42
2008	10,951	24.63	77.05
2012	10,206	22.95	100.00
Total	44,468	100.00	

- Check number of repeated observations available per individual
 - . keep if bmi != .
 (36,394 observations deleted)
 - . sort mcsid visitage
 - . by mcsid: gen nobs = _n
 - . by mcsid: gen totobs = _N
 - . browse mcsid visitage bmi nobs totobs

	mcsid	visitage	bmi	nobs	totobs
1	11985	3	16.9	1	3
2	11985	5	16.2	2	3
3	11985	7	15.61	3	3
4	11986	3	17.72	1	4
5	11986	5	15.72	2	4
6	11986	7	17.32	3	4
7	11986	11	20.3	4	4
8	11991	3	18.55	1	4
9	11991	5	18.17	2	4
10	11991	7	15.92	3	4
11	11991	11	17.01	4	4

Moving across long and wide layouts

Moving across long and wide layouts

- reshape is a useful command to move across long and wide layouts
- Requires some dataset preparation for reshape
- Keep the variables of interest

💼 mcs_closer_wp1.dta

Full dataset

✓ Name	Label
🗹 mcsid	MCS Research pseudo-ID
🗹 stid	Study identifier
✓ visitage	Age at visit/interview
sex sex	Sex of study member
🖌 xage	Actual age
🖌 Mt	Harmonised weight
✓ wtself	Weight, measured or self-report
🗹 wtimp	Weight, imperial or metric
✓ wtpre	Weight (precision)
✓ ht	Harmonised height
✓ htself	Height, measured or self-report
✓ htimp	Height, imperial or metric
htpre	Height (precision)
🕑 bmi	Body mass index (kg/m2)

Full dataset

🛓 mcs_closer_wp1.dta

	mcsid	stid	visitage	sex	xage	wt	wtself	wtimp	wtpre	ht	htself	htimp	htpre	bmi
1	11985	MCS	0											
2	11985	MCS	1											
З	11985	MCS	3											
4	11985	MCS	5											
5	11985	MCS	7											
6	11985	MCS	11											
7	11986	MCS	0											
8	11986	MCS	1											
9	11986	MCS	3											
10	11986	MCS	5											
11	11986	MCS	7											
12	11986	MCS	11											
13	11991	MCS	0											
14	11991	MCS	1											
15	11991	MCS	3											
16	11991	MCS	5											
17	11991	MCS	7											
18	11991	MCS	11											

Full dataset

💼 mcs_closer_wp1.dta

. tabstat bmi, by(visitage)

Summary for variables: bmi
Group variable: visitage (Age at visit/interview)

visitage	Mean
0	
1	•
3	16.86595
5	16.38981
7	16.66427
11	19.21847
Total	17.22816

Reduced dataset

💼 mcs_closer_wp1.dta

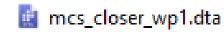
- . keep mcsid visitage sex bmi
- . keep if inrange(visitage,3,11)
 (26,954 observations deleted)
- . tabstat bmi, by(visitage)

Summary for variables: bmi Group variable: visitage (Age at visit/interview)

visitage	Mean
3	16.86595
5	16.38981
7	16.66427
11	19.21847
Total	17.22816

. recode	e bmi ///
>	(min/24.99 = 0 "BMI below 25") ///
>	(25/29.99 = 1 "BMI between 25-29.9") ///
>	(30/max = 2 "BMI 30+"), ///
>	gen(bmi_cat)
(44,468	differences between bmi and bmi_cat)

Reduced dataset



🚊 mcs_closer_wp1.dta

	mcsid	visitage	sex	bmi	bmi_cat
1	11985	3	Female	16.9	BMI below 25
2	11985	5	Female	16.2	BMI below 25
3	11985	7	Female	15.61	BMI below 25
4	11985	11	Female		
5	11986	3	Male	17.72	BMI below 25
6	11986	5	Male	15.72	BMI below 25
7	11986	7	Male	17.32	BMI below 25
8	11986	11	Male	20.3	BMI below 25
9	11991	3	Male	18.55	BMI below 25
10	11991	5	Male	18.17	BMI below 25
11	11991	7	Male	15.92	BMI below 25
12	11991	11	Male	17.01	BMI below 25

Reduced dataset

	mcsid	visitage	sex	bmi	bmi_cat
1	11985	3	Female	16.9	BMI below 25
2	11985	5	Female	16.2	BMI below 25
3	11985	7	Female	15.61	BMI below 25
4	11985	11	Female		
5	11986	3	Male	17.72	BMI below 25
6	11986	5	Male	15.72	BMI below 25
7	11986	7	Male	17.32	BMI below 25
8	11986	11	Male	20.3	BMI below 25
9	11991	3	Male	18.55	BMI below 25
10	11991	5	Male	18.17	BMI below 25
11	11991	7	Male	15.92	BMI below 25
12	11991	11	Male	17.01	BMI below 25

Main command

reshape wide bmi bmi_cat, i(mcsid) j(visitage)

Reduced dataset

💼 mcs_closer_wp1.dta

	mcsid	visitage	sex	bmi	bmi_cat
1	11985	3	Female	16.9	BMI below 25
2	11985	5	Female	16.2	BMI below 25
3	11985	7	Female	15.61	BMI below 25
4	11985	11	Female		
5	11986	3	Male	17.72	BMI below 25
6	11986	5	Male	15.72	BMI below 25
7	11986	7	Male	17.32	BMI below 25
8	11986	11	Male	20.3	BMI below 25
9	11991	3	Male	18.55	BMI below 25
10	11991	5	Male	18.17	BMI below 25
11	11991	7	Male	15.92	BMI below 25
12	11991	11	Male	17.01	BMI below 25

To reshape into a 'wide' layout

Main command

reshape_wide bmi bmi_cat, i(mcsid) j(visitage)

Reduced dataset

💼 mcs_closer_wp1.dta

	mcsid	visitage	sex	bmi	bmi_cat
1	11985	3	Female	16.9	BMI below 25
2	11985	5	Female	16.2	BMI below 25
3	11985	7	Female	15.61	BMI below 25
4	11985	11	Female		
5	11986	3	Male	17.72	BMI below 25
6	11986	5	Male	15.72	BMI below 25
7	11986	7	Male	17.32	BMI below 25
8	11986	11	Male	20.3	BMI below 25
9	11991	3	Male	18.55	BMI below 25
10	11991	5	Male	18.17	BMI below 25
11	11991	7	Male	15.92	BMI below 25
12	11991	11	Male	17.01	BMI below 25

Exhaustive list of timevarying variables

To reshape into a 'wide' layout

Main command

reshape wide bmi bmi_cat, i(mcsid) j(visitage)

Reduced dataset

💼 mcs_closer_wp1.dta

Linique identifier		mcsid	visitage	sex	bmi	bmi_cat
Unique identifier	1	11985	3	Female	16.9	BMI below 25
	2	11985	5	Female	16.2	BMI below 25
	З	11985	7	Female	15.61	BMI below 25
	4	11985	11	Female		
Exhaustive list of time-	5	11986	3	Male	17.72	BMI below 25
varying variables	6	11986	5	Male	15.72	BMI below 25
varying variables	7	11986	7	Male	17.32	Variable(s) that uniquely
To reshape into a	8	11986	11	Male	20.3	identify each unit
'wide' layout	9	11991	3	Male	18.55	
	10	11991	5	Male	18	r below 25
Main command	11	11991	7	Male	15.92	BMI below 25
Main command	12	11991	11	W IE	17.01	BMI below 25

reshape wide bmi bmi_cat, i(mcsid) j(visitage)

Reduced dataset

Time variable

Unique identifier		mcsid	visitage	sex	bmi	bmi_cat
Unique identifier	1	11985	3	Female	16.9	BMI below 25
	2	11985	5	Female	16.2	BMI below 25
	З	11985	7	Female	15.61	BMI below 25
	4	11985	11	Female		•
Exhaustive list of time-	5	11986	3	Male	17.72	BMI below 25
varying variables	6	11986	5	Male	15.72	BMI below 25
varying variablee	7	11986	7	Male	17.32	Variable(s) that uniquely
To reshape into a	8	11986	11	Male	20.3	identify each unit
'wide' layout	9	11991	3	Male	18.55	-
	10	11991	5	Male	18	r below 25
Main command	11	11991	7	Male	15.92	BMI belo Existing variable
	12	11991	11	u re	17.01	capturing time
		_		_		

reshape wide bmi bmi_cat, i(mcsid) j(visitage)

Reduced dataset

```
. reshape wide bmi bmi_cat, i(mcsid) j(visitage)
(j = 3 5 7 11)
```

Data	Long	->	Wide
Number of observations	53,908	->	13,477
Number of variables	5	->	10
j variable (4 values) xij variables:	visitage	->	(dropped)
			bmi3 bmi5 bmi11 bmi_cat3 bmi_cat5 bmi_cat11

Reduced dataset

	mcsid	visitage	sex	bmi	bmi_cat
1	11985	3	Female	16.9	BMI below 25
2	11985	5	Female	16.2	BMI below 25
3	11985	7	Female	15.61	BMI below 25
4	11985	11	Female		
5	11986	3	Male	17.72	BMI below 25
6	11986	5	Male	15.72	BMI below 25
7	11986	7	Male	17.32	BMI below 25
8	11986	11	Male	20.3	BMI below 25
9	11991	3	Male	18.55	BMI below 25
10	11991	5	Male	18.17	BMI below 25
11	11991	7	Male	15.92	BMI below 25
12	11991	11	Male	17.01	BMI below 25

mcsid	bmi3	bmi_cat3	bmi5	bmi_cat5	bmi7	bmi_cat7	bmi11	bmi_cat11	sex
11985	16.9	BMI below 25	16.2	BMI below 25	15.61	BMI below 25			Female
11986	17.72	BMI below 25	15.72	BMI below 25	17.32	BMI below 25	20.3	BMI below 25	Male
11991	18.55	BMI below 25	18.17	BMI below 25	15.92	BMI below 25	17.01	BMI below 25	Male

Reduced dataset

	mcsid	visitage	sex	bmi	bmi_cat
1	11985	3	Female	16.9	BMI below 25
2	11985	5	Female	16.2	BMI below 25
З	11985	7	Female	15.61	BMI below 25
4	11985	11	Female		
5	11986	3	Male	17.72	BMI below 25
6	11986	5	Male	15.72	BMI below 25
7	11986	7	Male	17.32	BMI below 25
8	11986	11	Male	20.3	BMI below 25
9	11991	3	Male	18.55	BMI below 25
10	11991	5	Male	18.17	BMI below 25
11	11991	7	Male	15.92	BMI below 25
12	11991	11	Male	17.01	BMI below 25

mcsid	bmi3	bmi_cat3	bmi5	bmi_cat5	bmi7	bmi_cat7	bmi11	bmi_cat11	sex
11985	16.9	BMI below 25	16.2	BMI below 25	15.61	BMI below 25			Female
11986	17.72	BMI below 25	15.72	BMI below 25	17.32	BMI below 25	20.3	BMI below 25	Male
11991	18.55	BMI below 25	18.17	BMI below 25	15.92	BMI below 25	17.01	BMI below 25	Male

Reduced dataset

💼 mcs_closer_wp1.dta

visitage mcsid bmi bmi cat sex BMI below 25 Female 16.9 1 11985 3 5) Female BMI below 25 2 11985 16.2 3 11985 7 Female 15.61 BMI below 25 Female 4 11985 11 . . BMI below 25 3 Male 5 11986 17.72 5) Male BMI below 25 11986 15.72 6 11986 7 Male 17.32 BMI below 25 7 BMI below 25 8 11986 11 Male 20.3 BMI below 25 9 3 Male 18.55 11991 Male BMI below 25 10 11991 5 18.17 7 Male BMI below 25 11991 15.92 11 12 11991 11 Male 17.01 BMI below 25

mcsid	bmi3	bmi_cat3	bmi5	bmi_cat5	bmi7	bmi_cat7	bmi11	bmi_cat11	sex
11985	16.9	BMI below 25	16.2	BMI below 25	15.61	BMI below 25			Female
11986	17.72	BMI below 25	15.72	BMI below 25	17.32	BMI below 25	20.3	BMI below 25	Male
11991	18.55	BMI below 25	18.17	BMI below 25	15.92	BMI below 25	17.01	BMI below 25	Male

Reduced dataset

💼 mcs_closer_wp1.dta

. pwcorr bmi3 bmi5 bmi7 bmi11

	bmi3	bmi5	bmi7	bmi11
bmi3	1.0000			
bmi5	0.6726	1.0000		
bmi7	0.5820	0.7960	1.0000	
bmi11	0.4340	0.6385	0.7929	1.0000

Reduced dataset

- The dataset in wide layout can now be saved (e.g., mcs_harmonised_bmi_3to11_wide.dta)
 - . save mcs_harmonised_bmi_3to11_wide
- Can go back to long layout by typing reshape long (only works if the dataset has been reshaped in the same session)

Reduced dataset

mcs_harmonised_bmi_3to11_wide.dta

✓ Name	Label
🗹 mcsid	MCS Research pseudo-ID
🗹 bmi3	3 bmi
✓ bmi_cat3	3 bmi_cat
🗹 bmi5	5 bmi
✓ bmi_cat5	5 bmi_cat
✓ bmi7	7 bmi
✓ bmi_cat7	7 bmi_cat
✓ bmi11	11 bmi
✓ bmi_cat11	11 bmi_cat
✓ sex	Sex of study member

mcsid	bmi3	bmi_cat3	bmi5	bmi_cat5	bmi7	bmi_cat7	bmi11	bmi_cat11	sex
11985	16.9	BMI below 25	16.2	BMI below 25	15.61	BMI below 25			Female
11986	17.72	BMI below 25	15.72	BMI below 25	17.32	BMI below 25	20.3	BMI below 25	Male
11991	18.55	BMI below 25	18.17	BMI below 25	15.92	BMI below 25	17.01	BMI below 25	Male

Reduced dataset

🔢 mcs_harmonised_bmi_3to11_wide.dta

✓ Name	Label
✓ mcsid	MCS Research pseudo-ID
✓ bmi3	3 bmi
✓ bmi_cat3	3 bmi_cat
✓ bmi5	5 bmi
✓ bmi_cat5	5 bmi_cat
✓ bmi7	7 bmi
✓ bmi_cat7	7 bmi_cat
✓ bmi11	11 bmi
✓ bmi_cat11	11 bmi_cat
sex 🖌	Sex of study member

In *wide* layout there is no variable capturing time at each observation

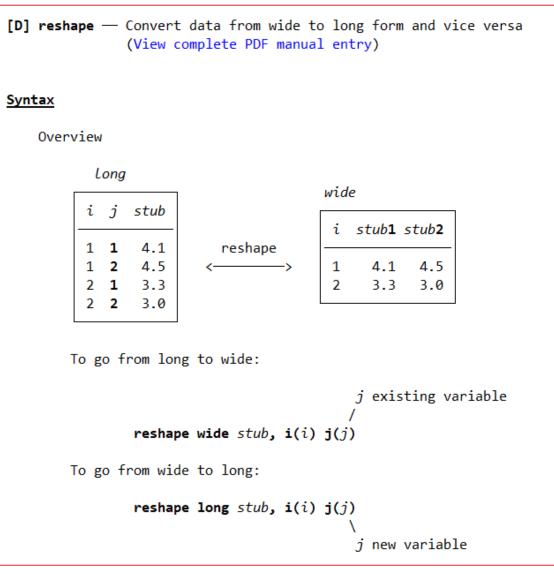
mcsid	bmi3	bmi_cat3	bmi5	bmi_cat5	bmi7 bmi_cat7		bmi11	bmi_cat11	sex
11985	16.9	BMI below 25	16.2	BMI below 25	15.61	BMI below 25			Female
11986	17.72	BMI below 25	15.72	BMI below 25	17.32	BMI below 25	20.3	BMI below 25	Male
11991	18.55	BMI below 25	18.17	BMI below 25	15.92	BMI below 25	17.01	BMI below 25	Male

Reduced dataset

✓ Name	e	Label
🗹 mcsid		MCS Research pseudo-ID
🕑 bmi3		3 bmi
🗹 bmi_c	at3	3 bmi_cat
🗹 bmi5		5 bmi
🗹 bmi_c	at <mark>5</mark>	o bmi_cat
🕑 bmi7		7 bmi
🗹 bmi_c	at <mark>7</mark>	7 bmi_cat
🕑 bmi <mark>1</mark> 1	1	11 bmi
🗹 bmi_c	at11	11 bmi_cat
✓ sex		Sex of study member

In *wide* layout there is no variable capturing time at each observation

Rather, it is contained in the variables' names (in this case, suffixes)


mcsid	bmi3	bmi_cat3	bmi5	bmi_cat5	bmi7 bmi_cat7		bmi11	bmi_cat11	sex
11985	16.9	BMI below 25	16.2	BMI below 25	15.61	BMI below 25			Female
11986	17.72	BMI below 25	15.72	BMI below 25	17.32	BMI below 25	20.3	BMI below 25	Male
11991	18.55	BMI below 25	18.17	BMI below 25	15.92	BMI below 25	17.01	BMI below 25	Male

Reduced dataset

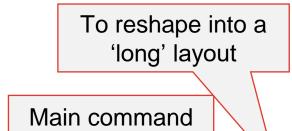
mcs_harmonised_bmi_3to11_wide.dta

help reshape

Reduced dataset

mcs_harmonised_bmi_3to11_wide.dta

Main command

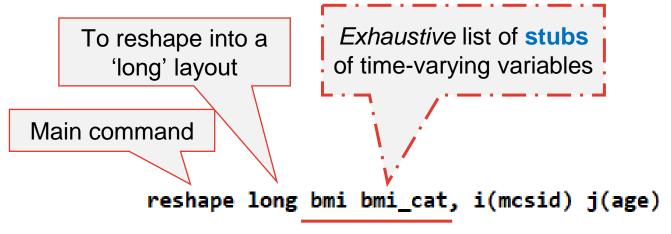

reshape long bmi bmi_cat, i(mcsid) j(age)

mcsid	bmi3	bmi_cat3	bmi5	bmi_cat5	bmi7 bmi_cat7		bmi11	bmi_cat11	sex
11985	16.9	BMI below 25	16.2	BMI below 25	15.61	BMI below 25			Female
11986	17.72	BMI below 25	15.72	BMI below 25	17.32	BMI below 25	20.3	BMI below 25	Male
11991	18.55	BMI below 25	18.17	BMI below 25	15.92	BMI below 25	17.01	BMI below 25	Male

mcs_harmonised_bmi_3to11_wide.dta

Reduced dataset

reshape long bmi bmi_cat, i(mcsid) j(age)


mcsid	bmi3	bmi_cat3	bmi5	bmi_cat5	bmi7 bmi_cat7		bmi11	bmi_cat11	sex
11985	16.9	BMI below 25	16.2	BMI below 25	15.61	BMI below 25		• · · · · · · · · · · · · · · · · · · ·	Female
11986	17.72	BMI below 25	15.72	BMI below 25	17.32	BMI below 25	20.3	BMI below 25	Male
11991	18.55	BMI below 25	18.17	BMI below 25	15.92	BMI below 25	17.01	BMI below 25	Male

mcs_harmonised_bmi_3to11_wide.dta

Reduced dataset

mcsid	bmi3	bmi_cat3	bmi5	bmi_cat5	bmi7	bmi_cat7	bmi11	bmi_cat11	sex
11985	16.9	BMI below 25	16.2	BMI below 25	15.61	BMI below 25			Female
11986	17.72	BMI below 25	15.72	BMI below 25	17.32	BMI below 25	20.3	BMI below 25	Male
11991	18.55	BMI below 25	18.17	BMI below 25	15.92	BMI below 25	17.01	BMI below 25	Male

bmi cat11

BMI below 25

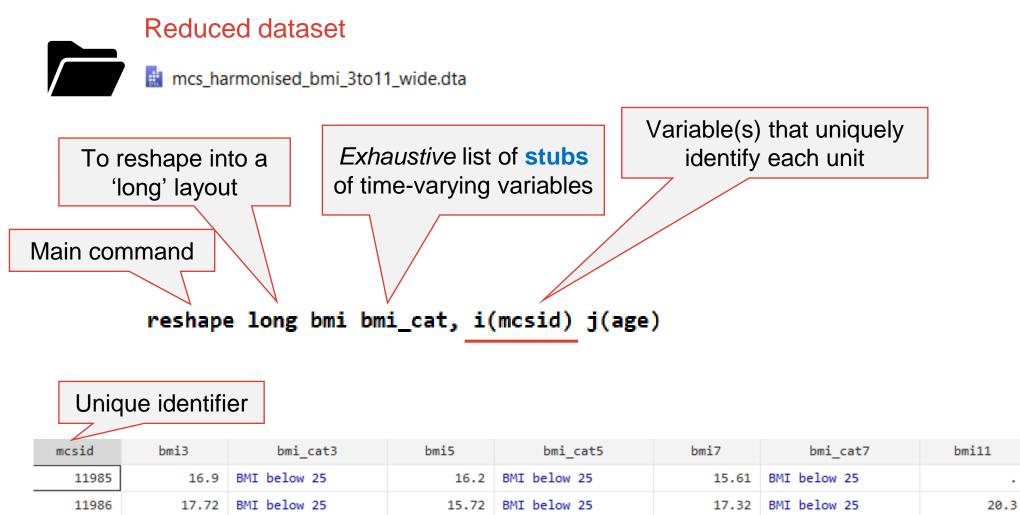
BMI below 25

17.01

sex

Female

Male

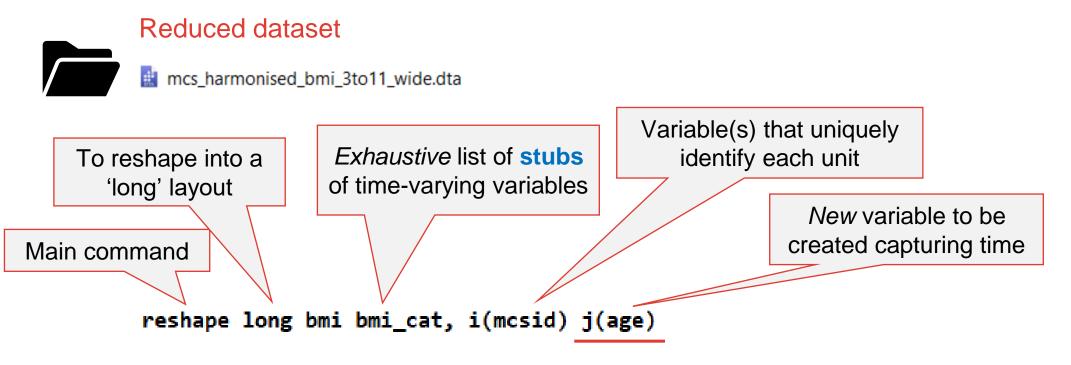

Male

reshape: from wide to long

BMI below 25

18.55

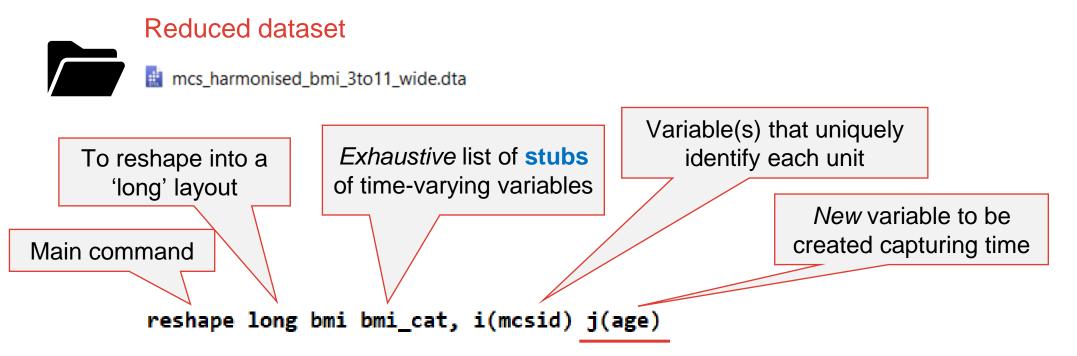
11991


BMI below 25

15.92

BMI below 25

18.17



Unique	identifier
--------	------------

mcsid	bmi3	bmi_cat3	bmi5	bmi_cat5	bmi7	bmi7 bmi_cat7		bmi_cat11	sex
11985	16.9	BMI below 25	16.2	BMI below 25	15.61	BMI below 25			Female
11986	17.72	BMI below 25	15.72	BMI below 25	17.32	BMI below 25	20.3	BMI below 25	Male
11991	18.55	BMI below 25	18.17	BMI below 25	15.92	BMI below 25	17.01	BMI below 25	Male

Unic	que identifi	er	Which will take on these values									
mcsid	bm:13	bmi_cat3	bm:15	bmi_cat5	bmi7	bmi_cat7	bmi11	bmi_cat11	sex			
11985	16.9	BMI below 25	16.2	BMI below 25	15.61	BMI below 25	· ·		Female			
11986	17.72	BMI below 25	15.72	BMI below 25	17.32	BMI below 25	20.3	BMI below 25	Male			
11991	18.55	BMI below 25	18.17	BMI below 25	15.92	BMI below 25	17.01	BMI below 25	Male			

Reduced dataset					mcsid	age	bmi	bmi_cat	sex
				1	11985	3	16.9	BMI below 25	Female
mcs_harmonised_bmi_3to11	1_wide.dta			2	11985	5	16.2	BMI below 25	Female
				З	11985	7	15.61	BMI below 25	Female
. reshape long bmi bmi_cat,	i(mcsid) j(ag	ze)		4	11985	11			Female
(j = 3 5 7 11)				5	11986	3	17.72	BMI below 25	Male
() =)) / 11)				6	11986	5	15.72	BMI below 25	Male
		->		7	11986	7	17.32	BMI below 25	Male
Data	Wide		Long	8	11986	11	20.3	BMI below 25	Male
				9	11991	3	18.55	BMI below 25	Male
Number of observations	13,477	->	53,908	10	11991	5	18.17	BMI below 25	Male
Number of variables	10	->	5	11	11991	7	15.92	BMI below 25	Male
j variable (4 values)		->	age	12	11991	11	17.01	BMI below 25	Male
xij variables:									
bmi3 bmi	5 bmi11	->	bmi						
bmi_cat3 bmi_cat5	. bmi_cat11	->	bmi_cat						

Reduced dataset

mcs_harmonised_bmi_3to11_wide.dta

- The dataset in long layout can now be saved (e.g., mcs_harmonised_bmi_3to11_long.dta)
- Can go back to wide layout by typing reshape wide (only works if the dataset has been reshaped in the same session)

Reduced dataset

	mcs_harmonised_bmi_3to11_wide.dta
--	-----------------------------------

✓ Name	Label
✓ mcsid	MCS Research pseudo-ID
✓ bmiβ	3 bmi
✓ bmi_cat3	3 bmi_cat
🗹 bmi5	5 bmi
✓ bmi_cat5	5 bmi_cat
🗹 bmi7	7 bmi
✓ bmi_cat	7 bmi_cat
🕑 bmi <mark>11</mark>	11 bmi
✓ bmi_cat11	11 bmi_cat
🖌 sex	Sex of study member

In *wide* layout there is no variable capturing time at each observation

Rather, it is contained in the variables' names (in this case, suffixes)

If not, need to make sure it is

mcsid	bmi3	bmi_cat3	bmi5	bmi_cat5	bmi7	bmi_cat7	bmi11	bmi_cat11	sex
11985	16.9	BMI below 25	16.2	BMI below 25	15.61	BMI below 25			Female
11986	17.72	BMI below 25	15.72	BMI below 25	17.32	BMI below 25	20.3	BMI below 25	Male
11991	18.55	BMI below 25	18.17	BMI below 25	15.92	BMI below 25	17.01	BMI below 25	Male

Remember this?

- rename multiple variables
 - . rename (BEMOTION CEMOTION DDEMOTION FEMOTION GEMOTION) (EMOTION3 EMOTION5 EMOTION7
 - > EMOTION14 EMOTION17)
 - . sum EMOTION*

Variable	Obs	Mean	Std. dev.	Min	Max
EMOTION3	14,733	1.383629	1.520021	0	10
EMOTION5	14,717	1.397024	1.605305	0	10
EMOTION7	13,433	1.539195	1.774631	0	10
EMOTION14	11,329	2.048725	2.138997	0	10
EMOTION17	9,271	2.045626	2.243622	0	10

Remember this?

- rename multiple variables
 - . rename (BEMOTION CEMOTION DDEMOTION FEMOTION GEMOTION) (EMOTION3 EMOTION5 EMOTION7
 - > EMOTION14 EMOTION17)
 - . sum EMOTION*

Variable	Obs	Mean	Std. dev.	Min	Max
EMOTION3	14,733	1.383629	1.520021	0	10
EMOTION5	14,717	1.397024	1.605305	0	10
EMOTION7	13,433	1.539195	1.774631	0	10
EMOTION14	11,329	2.048725	2.138997	0	10
EMOTION17	9,271	2.045626	2.243622	0	10

• Set up the suffixes in a way that is helpful and informative: e.g., this reflects the age at the specific sweep (they don't necessarily need to be at the end of the variable name, see help reshape)

Remember this?

- rename multiple variables
 - . rename (BEMOTION CEMOTION DDEMOTION FEMOTION GEMOTION) (EMOTION3 EMOTION5 EMOTION7
 - > EMOTION14 EMOTION17)
 - . sum EMOTION*

Variable	Obs	Mean	Std. dev.	Min	Max
EMOTION3	14,733	1.383629	1.520021	0	10
EMOTION5	14,717	1.397024	1.605305	0	10
EMOTION7	13,433	1.539195	1.774631	0	10
EMOTION14	11,329	2.048725	2.138997	0	10
EMOTION17	9,271	2.045626	2.243622	0	10

• Make sure the stubs are consistent within variable

Longitudinal data structure: summary

- Importance of unique identifiers
- Merging datasets (1:1, additional options)
- Wide layout: one row per unit, no variable capturing time
- Long layout: multiple rows per unit, variable(s) capturing time
- Different layouts \rightarrow different data management and analysis opportunities
 - Some analyses require specific layouts (e.g., long data for multilevel modelling, wide data for structural equation modelling)

Questions?

Longitudinal Data Visualisation with demonstration in Stata

CENTRE FOR LONGITUDINAL STUDIES

Economic and Social Research Council

Motivation: Describing patterns of change over time

- Qualitative and quantitative change
- Change within a unit (intraindividual change) versus differences between units (interindividual differences)
- Intergenerational change
- Short-term versus long-term change
- Focus on description, prediction, or explanation of change

Outline

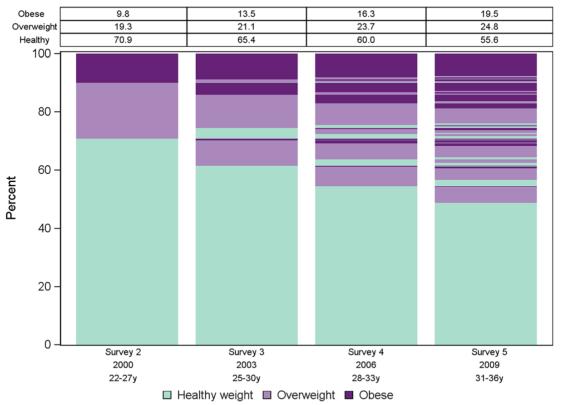
- Introduce simple and useful tools to descriptive and visualise longitudinal data
 - (Artificial) distinction between categorical and continuous variables
 - Longitudinal description, rather than cross-sectional (e.g. Table 1 of academic article)

CENTRE FOR

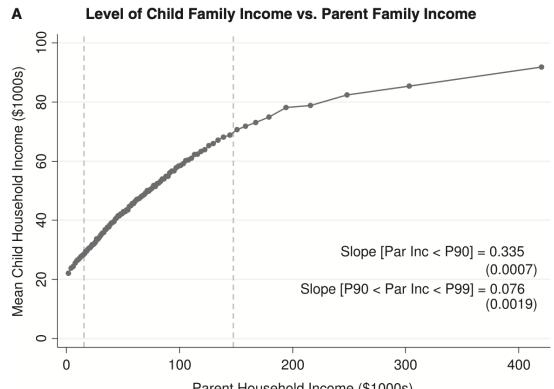
- Categorical Variables:
 - Descriptive statistics, transition probability matrix
 - Visualization tools
 - Lasagne plots
- Continuous Variables:
 - Descriptive statistics, correlation and linear regression
 - Visualization tools
 - Box/Violin/Spaghetti/Lasagne plots
 - Diagnostic plots (histograms, kernels, symmetry/quintile/Qnorm plots)

Before we start

- Objective: Demonstrate the use of tools that are useful to understand your data before moving into more complex modelling techniques.
- Set up:
 - Data: The Millennium Cohort Study
 - Balanced sample (or no attrition) n=6427; ages: 3, 5, 7, 14, 17
 - No missing data
 - Variables represent the truth and are measured without errors


Working example:

• Understand longitudinal patterns of children's Body Mass Index.



Descriptive and Visualisation tools

Categorical variables

Continuous variables

Parent Household Income (\$1000s)

Plot and marginal distribution table of weight level over survey wave

Jones et al (2014), Visualising and modelling changes in categorical variables in longitudinal studies, BMC Medical Research Methodology.

Association between Children's and Parents' Incomes.

Chetty et al (2014), Where is the land of opportunity? The geography of intergenerational mobility in the United States, Quarterly Journal of Economics

Categorical variables

Include a limited number of possible values that represent a qualitative property of units (Socioeconomic Status, Ethnicity, Income quantiles, among others.)

- Descriptive statistics, transition probability matrix
- Lasagne plot

Descriptive statistics

- Frequency tables
- Cross tables

MCS

mcs_bmi_wide_clswebinar.dta

	mcsid	sex	bmi3	bmi5	bmi7	bmi11	bmi14	bmi17
1	1	male	17.36	15.72	17.32	20.3	19.64	19.6
2	2	male	18.26	18.17	15.92	17.01	18.95	21.89

	mcsid	sex	bmic3	bmic5	bmic7	bmic11	bmic14	bmic17
1	1	male	Normal	Normal	Normal	Normal	Normal	Normal
2	2	male	Overweight	Overweight	Normal	Normal	Normal	Normal

mcs_bmi_long_clswebinar.dta

	mcsid	age	sex	bmi	bmic
1	1	3	male	17.36	Normal
2	1	5	male	15.72	Normal
3	1	7	male	17.32	Normal
4	1	11	male	20.3	Normal
5	1	14	male	19.64	Normal
6	1	17	male	19.6	Normal
7	2	3	male	18.26	Overweight
8	2	5	male	18.17	Overweight
9	2	7	male	15.92	Normal
10	2	11	male	17.01	Normal
11	2	14	male	18.95	Normal
12	2	17	male	21.89	Normal

table age, stat(fvpercent bmic) nformat(%5.2f)

	I	BMI categories	S
	Normal	0verweight	0bese
Age at MCS sweep			
3	83.55	12.56	3.89
5	80.89	14.98	4.12
7	82.37	13.15	4.48
11	75.59	19.37	5.04
14	75.56	18.39	6.05
17	72.27	18.36	9.37
Total	78.37	16.14	5.49

MCS

mcs_bmi_wide_clswebinar.dta

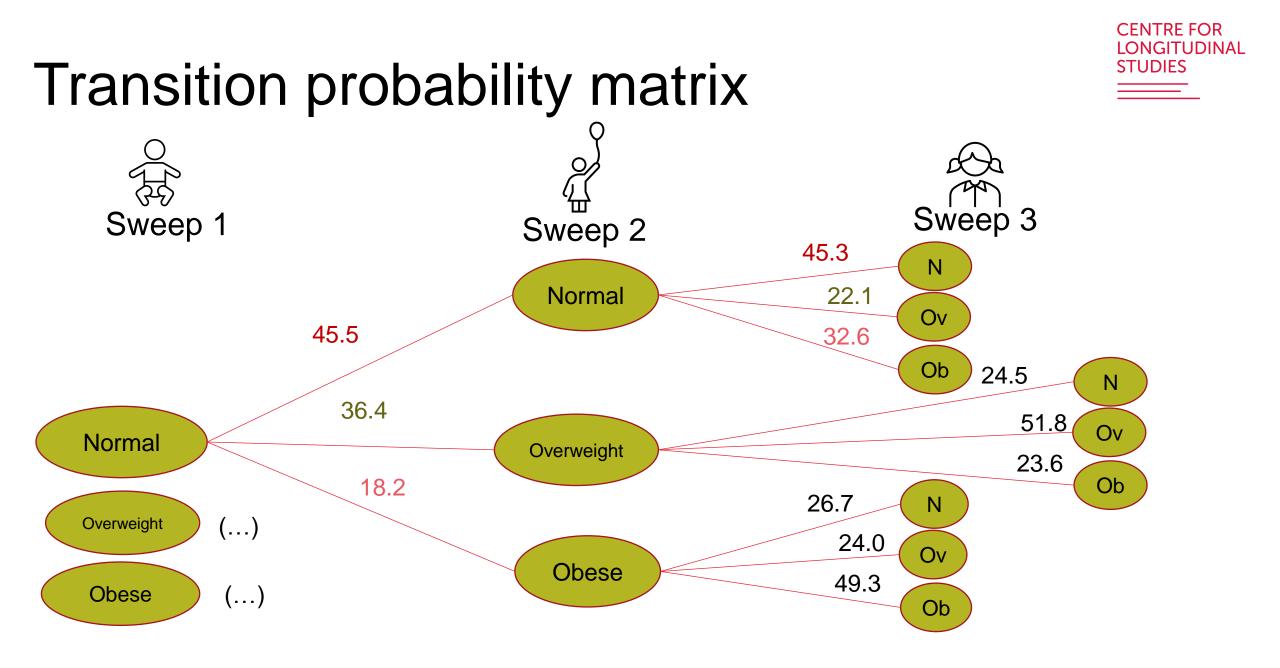
	mcsid	sex	bmi3	bmi5	bmi7	bmi11	bmi14	bmi17
1	1	male	17.36	15.72	17.32	20.3	19.64	19.6
2	2	male	18.26	18.17	15.92	17.01	18.95	21.89

m	ncsid	sex	bmic3	bmic5	bmic7	bmic11	bmic14	bmic17
1	1	male	Normal	Normal	Normal	Normal	Normal	Normal
2	2	male	Overweight	Overweight	Normal	Normal	Normal	Normal

mcs_bmi_long_clswebinar.dta

	mcsid	age	sex	bmi	bmic
1	1	3	male	17.36	Normal
2	1	5	male	15.72	Normal
3	1	7	male	17.32	Normal
4	1	11	male	20.3	Normal
5	1	14	male	19.64	Normal
6	1	17	male	19.6	Normal
7	2	3	male	18.26	Overweight
8	2	5	male	18.17	Overweight
9	2	7	male	15.92	Normal
10	2	11	male	17.01	Normal
11	2	14	male	18.95	Normal
12	2	17	male	21.89	Normal

. tab bmic5 bmic7, cell nofreq


BMI categories	BMI categories (age 7)					
(age 5)	Normal	0verweigh	Obese	Total		
Normal Overweight Obese	75.73 6.13 0.51	4.79 7.34 1.01	0.37 1.51 2.60	80.89 14.98 4.12		
Total	82.37	13.15	4.48	100.00		

Transition probability matrix

			Swee	ep 2						
	n	Normal	Overwe ight	Obese	Total		Normal	Overwei ght	Obese	Total
31)O	Normal	50	40	20	110	Normal	45.5	36.4	18.2	100.0
Sweep 1	Overweight	40	50	25	115	Overweight	34.8	43.5	21.7	100.0
Swi	Obese	5	20	30	55	Obese	9.1	36.4	54.5	100.0

Pr(High class | Low class) = Probability of being obese at sweep 3 given that I had normal weight in sweep 1 = (20/110)x100 = 18.2

Transition probability matrix

- Useful to study stability of states over time
- Continuous variables can be categorised (e.g. deciles). Although we lose information, it gives us results that are easier to explain.
- Capture non-linearities as opposed to correlations
- It is possible to compute transition probabilities for panels with t>2

Transition probability matrix - Stata

. xtset mcsid age

Panel variable: mcsid (strongly balanced)
Time variable: age, 3 to 17, but with gaps
Delta: 1 unit

. xttab bmic

bmic	Overall Freq. Percent		Between Freq. Percent	Within Percent
Normal Overweig Obese	3022278.37622216.1421185.49		611295.10278043.2699215.43	82.41 37.30 35.58
Total	38562 100.00	(n	9884 153.79 = 6427)	65.02

The total within of 65% is the normalized between weighted average of the within percents, that is, (6112 * 95% + 2780*43 + 992 * 15%)/ 9884. It is a measure of the overall stability of the BMI category variable.

Transition probability matrix - Stata

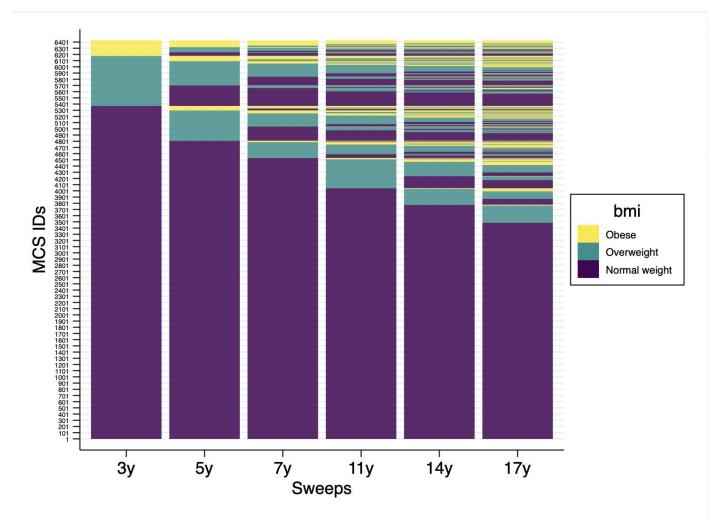
. bys sex: xttrans bmic,

. xttrans bmic, freq

-> sex = female

BMI	BM	I categorie	es	
categories	1	2	3	Total
1	23,102	2,306	169	25,577
	90.32	9.02	0.66	100.00
2	1,602	2,713	727	5,042
	31.77	53.81	14.42	100.00
3	148	396	972	1,516
	9.76	26.12	64.12	100.00
Total	24,852	5,415	1,868	32,135
	77.34	16.85	5.81	100.00

BMI	BM	I categories	5	
categories	1	2	3	Total
1	89.91	9.49	0.60	100.00
2	30.53	55.40	14.07	100.00
3	7.85	27.40	64.76	100.00
Total	75.84	18.13	6.02	100.00


-> sex = male

BMI	BM	I categories		
categories	1	2	3	Total
1	90.74	8.54	0.72	100.00
2	33.29	51.87	14.84	100.00
3	11.92	24.68	63.39	100.00
Total	78.89	15.52	5.59	100.00

Lasagne plot for categorical variables

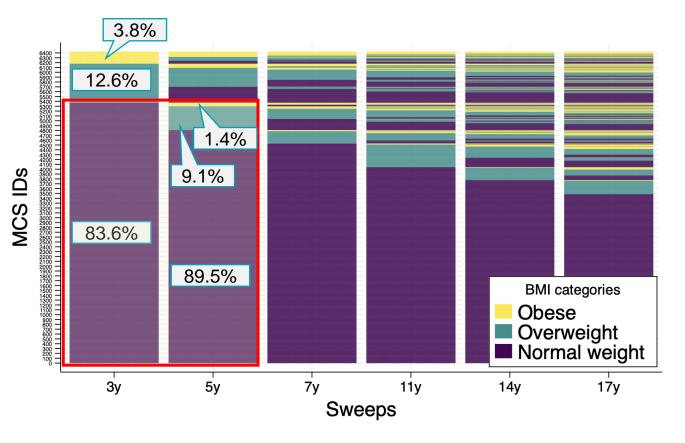
- A type of heat map
- Each row is a unit (e.g., girls)
- Variable of interest is sorted across time
- Summarise all possible transitions
- Useful when small number of categories, not much with larger number and long periods
- It gives a first look of the data

з

Lasagne plot for categorical variables

mcs_bmi_wide_clswebinar.dta

mcs	sid	sex	bmic3	bmic5	bmic7	bmic11	bmic14	bmic1	7			
	1	male	Normal	Normal	Normal	Normal	Normal	Normal				
	2	male	Overweight	Overweight	Normal	Normal	Normal	Normal				
			omic7 bmic11	bmic14 bmic1	7				mcs_bmi_l	-		
en 1a	_spm	ic=_n						mcsid	age	bmic	id_sbmic	
								1 1		Normal	1	
,	 Varia	ble of int	orast is	In long la	wout thore			2		Normal	1	
		ed acros		U	ayout there			3		Normal	1	
	3011		S lime	variable of	capturing tir	ne at		4		Normal	1	
				each	observation	า		5		Normal	1	
						-		6		Normal	1	
								7 5165		Normal	2	
he	atpl	ot [z] y	Х					8 5165		Normal	2	
								9 5165		Normal Normal	2	
				statistic(as				10 5165 11 5165		Normal	2	
			2	1 00)6400,labs		///		12 5165		Normal	2	
		-	range(1))	1 1.01 2.001	3.1) ///			12 5165		Normal	3	
				"7y" 4 "11y"	5 "14v" 6 "	17v") ///		14 4723	-	Normal	3	
				ge)) ytitle(M	-			15 4723		Normal	3	
			e(horizontal		-,			16 4723		Normal	3	
) graphregio				17 4723		Normal	3	
1	egen	d(reai	on(lcolor(b)	lack)) subtit	le("BMI cated	pories") ///		18 4723		Normal	3	



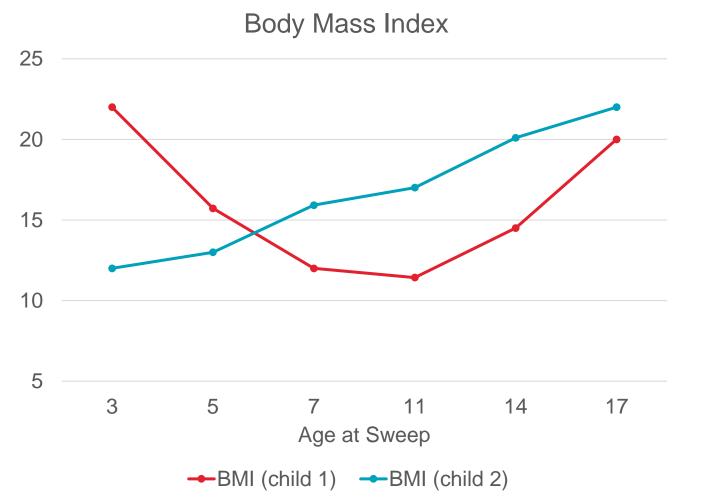
Lasagne plot for categorical variables

mcs_bmi_wide_clswebinar.dta

```
heatplot bmic id_sbmic t, statistic(asis) ///
discrete(0.9) ylabel(0(100)6400,labsize(tiny)) ///
xlabel(1 2 3 4 5 6) cut(1 1.01 2.001 3.1) ///
keylabels(, range(1) ) ///
xlabel( 1 "3y" 2 "5y" 3 "7y" 4 "11y" 5 "14y" 6 "17y") ///
xtitle(Sweeps ,size(large)) ytitle(MCS IDs, size(large)) ///
ylabel(,angle(horizontal ) ) ///
plotregion(fcolor(white)) graphregion(fcolor(white)) ///
legend( region(lcolor(black)) subtitle("BMI categories") ///
ring(0) position(4) col(1) size(large))
```

gr_edit legend.plotregion1.label[1].text = {}
gr_edit legend.plotregion1.label[1].text.Arrpush Obese
gr_edit legend.plotregion1.label[2].text = {}
gr_edit legend.plotregion1.label[2].text = {}
gr_edit legend.plotregion1.label[3].text = {}
gr_edit legend.plotregion1.label[3].text.Arrpush Normal weight

Continuous variables

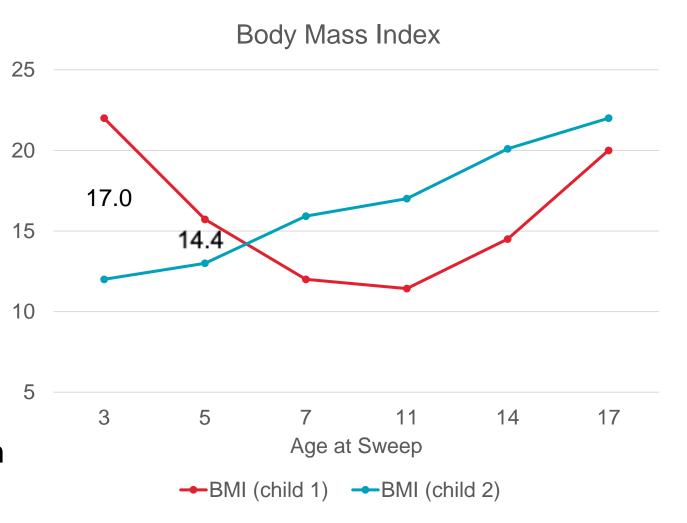


Can take on any value within a range (Income, body weight)

- Descriptive statistics, correlation and linear regression
- Graphical tools
 - Box plots
 - Violin plots
 - Spaghetti and Lasagne plots
 - Diagnostic plots (histograms, kernel plot, symmetry plot, quintile plot, Qnorm plot)

1) Cross-sectional Mean/Average

Age at Sweep	BMI (child 1)	BMI (child 2)	?
3	22	12	
5	16	13	
7	12	16	
11	11	17	
14	15	20	
17	20	22	

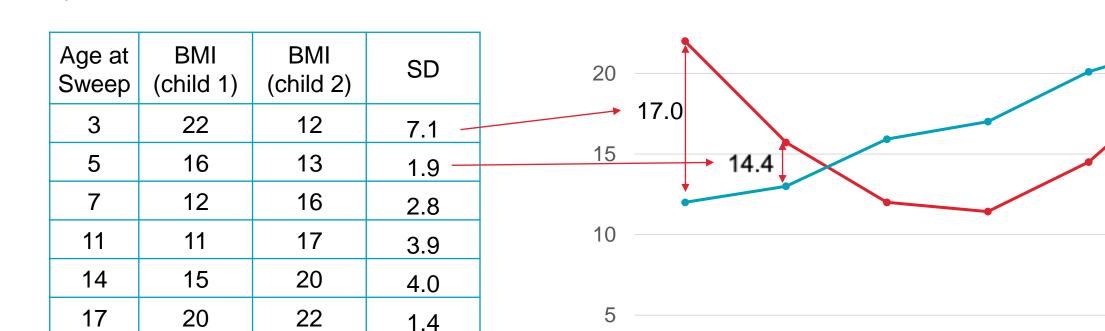


CENTRE FOR LONGITUDINAL STUDIES

1) Cross-sectional Mean/Average

Age at Sweep	BMI (child 1)	BMI (child 2)	Mean
3	22	12	17.0
5	16	13	14.4
7	12	16	14.0
11	11	17	14.2
14	15	20	17.3
17	20	22	21.0

Dividing the sum of the values in each sweep by the total number of observations



CENTRE FOR LONGITUDINAL STUDIES

2) Cross-sectional Standard Deviation ₂₅

CENTRE FOR LONGITUDINAL STUDIES

Body Mass Index

3

5

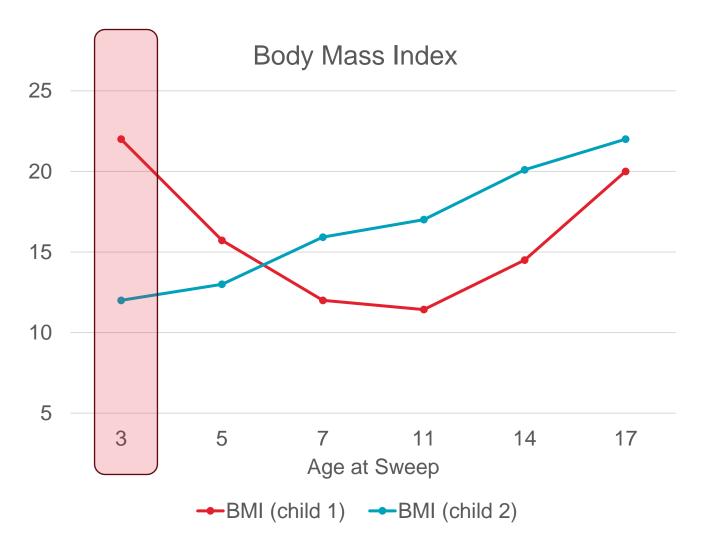
7

11

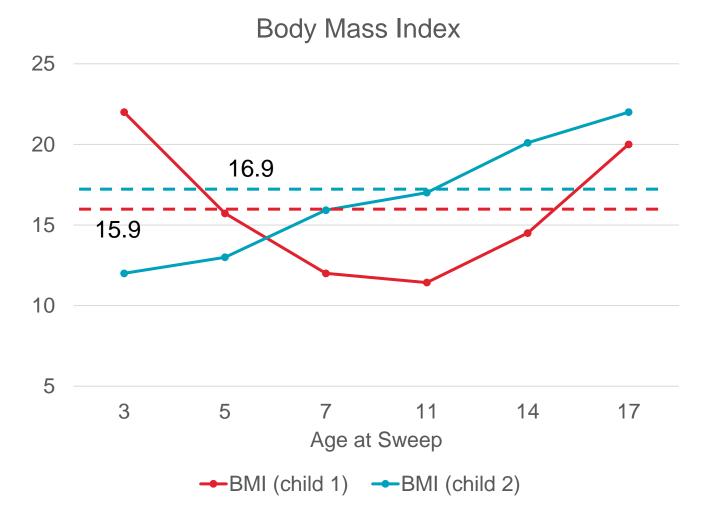
Age at Sweep

←BMI (child 1) ←BMI (child 2)

14


17

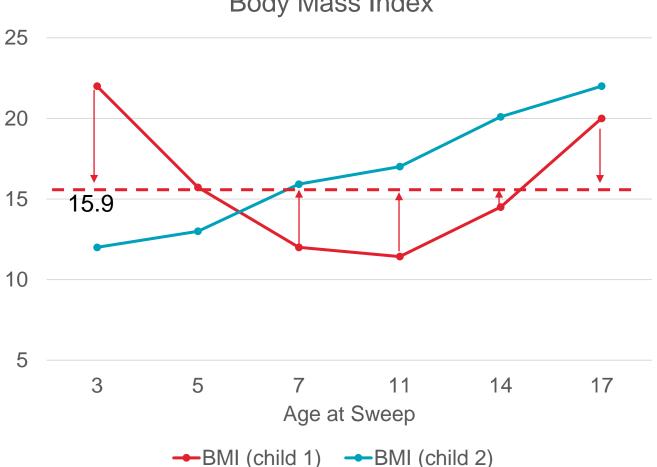
Dispersion of a dataset relative to its mean


3) Cross-sectional: Others

- Coefficient of Variation or (Normalized Root-Mean-Square Deviation)
- Median
- Min
- Max
- Quantiles Q1 Q2 Q3 Q4 Q5
- Kurtosis
- Skewness

1) Longitudinal Mean/Average

_		
Age at	BMI	BMI
Sweep	(child 1)	(child 2)
3	22	12
5	16	13
7	12	16
11	11	17
14	15	20
17	20	22
	Child 1	Child 2
Mean	15.9	16.7
SD	4.3	3.9
Coefficient		
of Variation	0.27	0.23

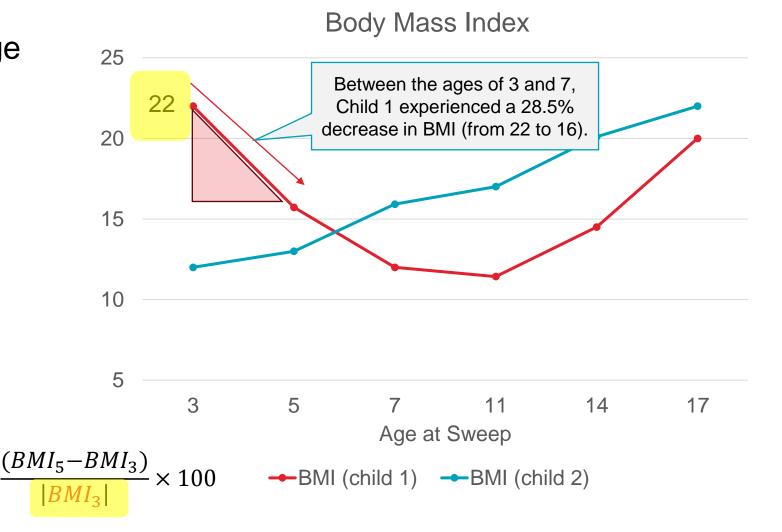


CENTRE FOR LONGITUDINAL

STUDIES

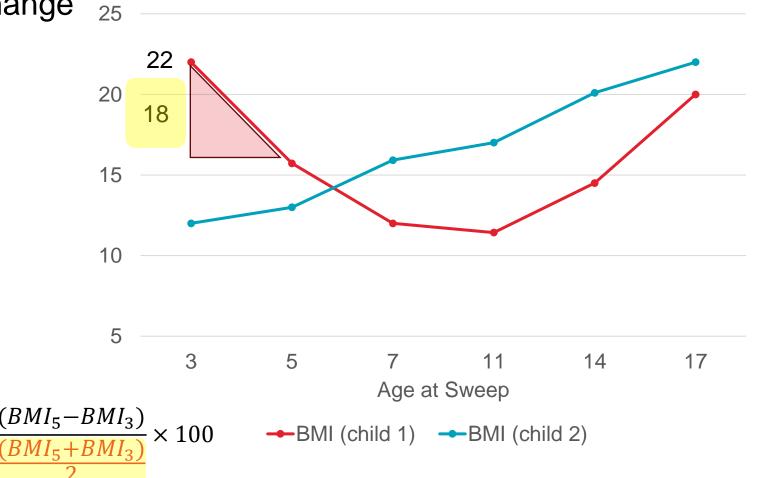
2) Longitudinal Standard Deviation

Age at	BMI	BMI
Sweep	(child 1)	(child 2)
3	22	12
5	16	13
7	12	16
11	11	17
14	15	20
17	20	22
	Child 1	Child 2
Mean	15.9	16.7
SD	4.3	3.9
Coefficient		
of Variation	0.27	0.23


Body Mass Index

3) Individual Percentage Change

Age	BMI (child 1)	BMI (child 2)	PCh (child 1)	PCh (child 2)
3	22	12		
5	16	13	-28.5	8.3
7	12	16	-23.7	22.5
11	11	17	-4.8	6.8
14	15	20	26.9	18.2
17	20	22	37.9	9.5

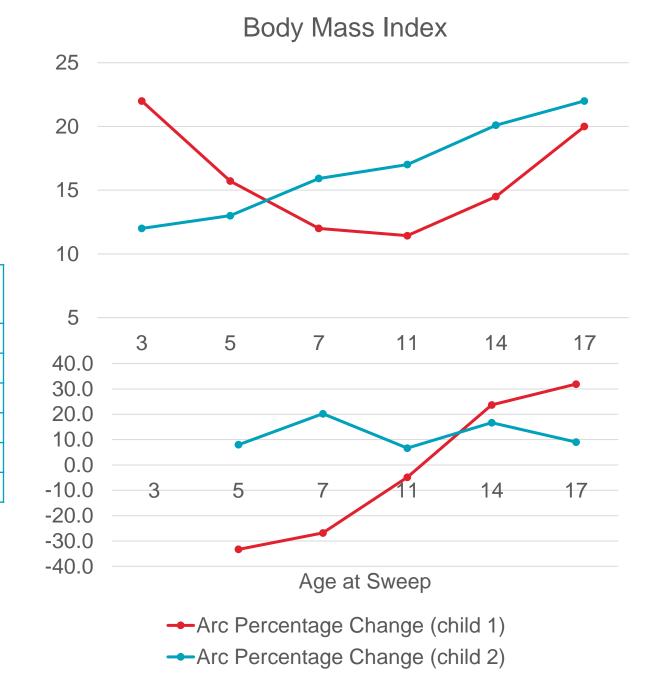


Change in BMI divided by the absolute value of the initial BMI, multiplied by 100.

4) Individual Arc Percentage Change

Age	BMI (child 1)	BMI (child 2)	APCh (child 1)	APCh (child 2)
3	22	12		
5	16	13	-33	8
7	12	16	-27	20
11	11	17	-5	7
14	15	20	24	17
17	20	22	32	9

Change in BMI divided by the midpoint, multiplied by 100.

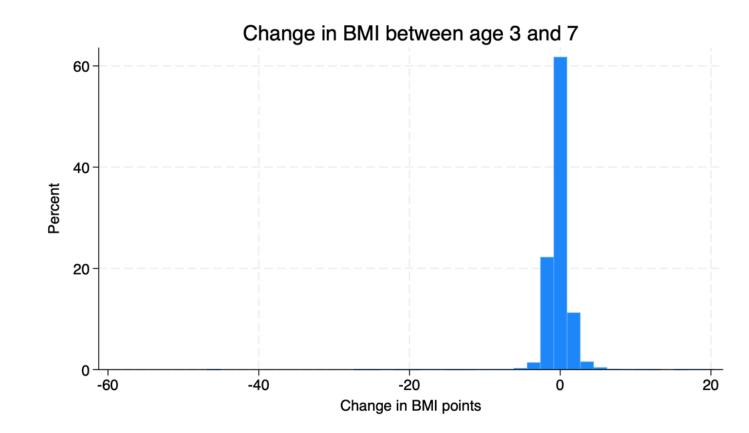


CENTRE FOR LONGITUDINAL STUDIES

Body Mass Index

5) Individual SD of Arc Percentage Change

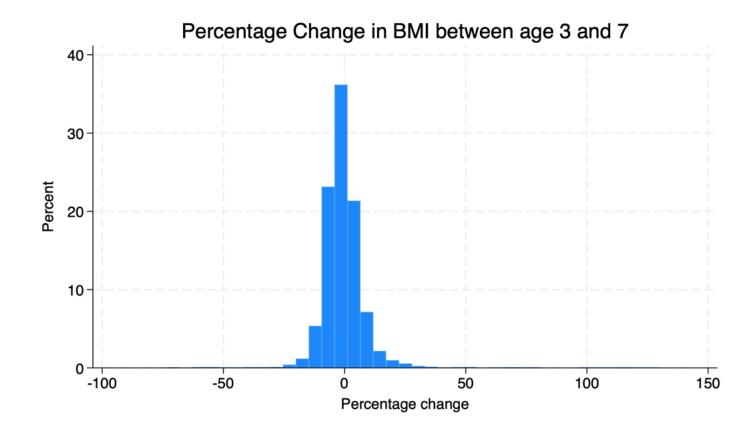
۸ao	BMI		BMI		APCh		APCh	
Age (ch		ild 1)	ld 1) (chil		(child 1)		(child 2)	
3		22 1		2				
5		16	13		-33		8	
7		12	16		-27		20	
11		11	17		-5		7	
14		15	20		24		17	,
17		20	22		32		9	
		Child 1		Child 2			Î	
Mean		15.9		16.7				
SD		4.3		3.9				
CV 0.2		.7 0.23						
SD Arc	SD Arc PCh 29		.2		6.0			


mcs_bmi_long_clswebinar.dta

xtset mcsid t	mcsid	bmi	t	bmi_l	ch_bmi	pch_bmi	apch_bmi	sd_apch_bmi
* Lag of BMI gen bmi_l=l1.bmi * Change in BMI	1	17.36	1					10.29573
	1	15.72	2	17.36111	-1.636619	-9.426923	-9.893236	10.29573
gen ch bmi=(bmi-bmi_l)	1	17.32	3	15.72449	1.595506	10.14663	9.656713	10.29573
* Percentage Change	1	20.3	4	17.32	2.98	17.20555	15.84264	10.29573
<pre>gen pch_bmi=((bmi-bmi_l)/bmi_l)*100 * Arc Percentage Change in BMI gen apch_bmi=((bmi-bmi_l)/((bmi+bmi_l)/2))*100 * SD of Arc Percentage Change in BMI</pre>	1	19.64	5	20.3	66362	-3.269064	-3.323386	10.29573
	1	19.6	6	19.63638	0394115	2007068	2009084	10.29573
	2	18.26	1					10.91704
bys mcsid: egen sd_apch_bmi=sd(apch_bmi)	2	18.17	2	18.26221	0921402	5045403	5058163	10.91704
-,	2	15.92	3	18.17007	-2.250067	-12.38337	-13.20072	10.91704
	2	17.01	4	15.92	1.09	6.846733	6.620103	10.91704
	2	18.95	5	17.01	1.936836	11.38646	10.77312	10.91704
	2	21.89	6	18.94684	2.944019	15.53832	14.41815	10.91704

3) Individual Change in BMI

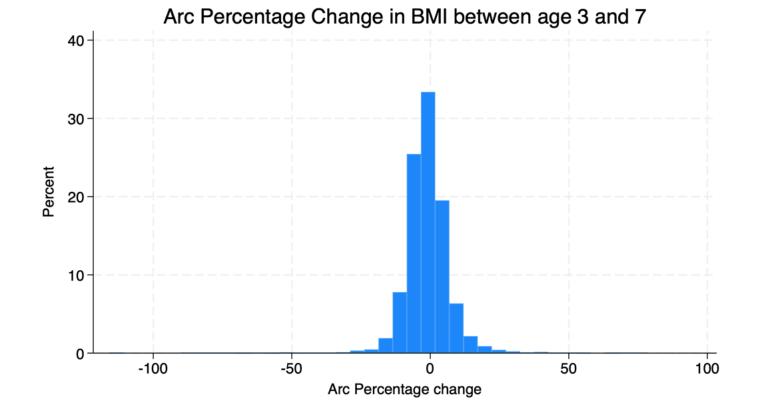
hist ch_bmi if age==5 , ///
title(Change in BMI between age 3 and 7) ///
plotregion(fcolor(white)) graphregion(fcolor(white)) ///
percent xtitle(Change in BMI points)



3) Individual Percentage Change

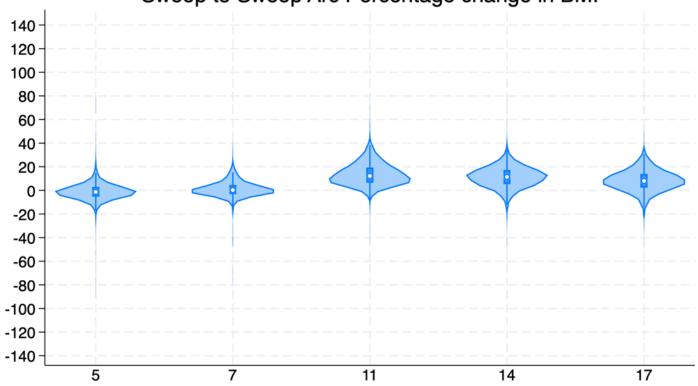
hist pch_bmi if age==5 , ///
title(Percentage Change in BMI between age 3 and 7) ///
plotrogion(fcolor(white)) graphrogion(fcolor(white)) ///

plotregion(fcolor(white)) graphregion(fcolor(white)) ///
percent xtitle(Percentage change)



hist apch_bmi if age==5 , ///

4) Individual Arc Percentage Change

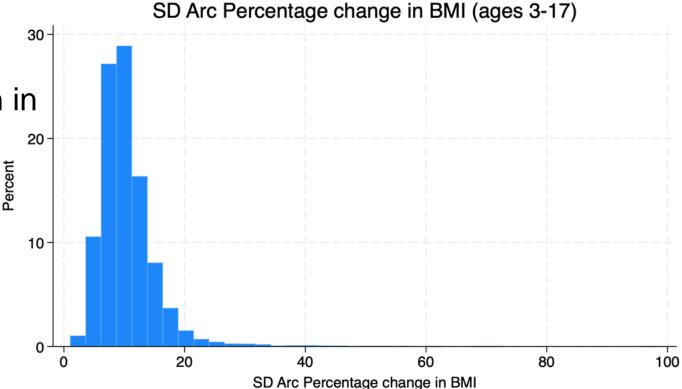

title(Arc Percentage Change in BMI between age 3 and 7) /// plotregion(fcolor(white)) graphregion(fcolor(white)) /// percent xtitle(Arc Percentage change)

4) Individual Arc Percentage Change

vioplot apch_bmi if age>3 , over(age) ///
title(Sweep to Sweep Arc Percentage change in BMI) ///
ylabel(-140(20)140, angle(horizontal)) ///
yscale(range(-140 140))

Sweep to Sweep Arc Percentage change in BMI

5) Individual SD Arc Percentage

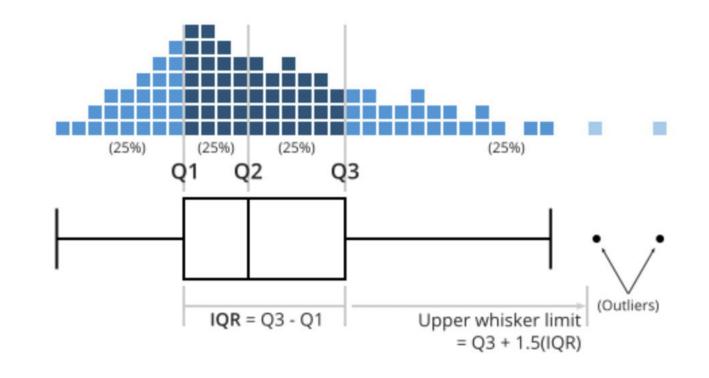

It characterises BMI trajectories based on within individual variation in BMI over the lifecycle (ages 3-7). ²⁰

Change

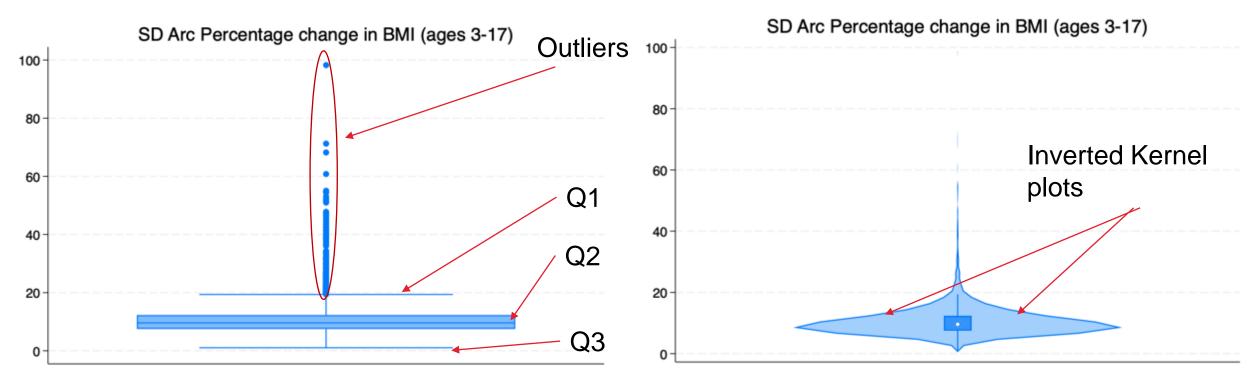
hist sd_apch_bmi if age==5 , ///
title(SD Arc Percentage change in BMI (ages 3-17)) ///
plotregion(fcolor(white)) graphregion(fcolor(white)) ///
percent xtitle(SD Arc Percentage change in BMI)

CENTRE FOR LONGITUDINAL

STUDIES

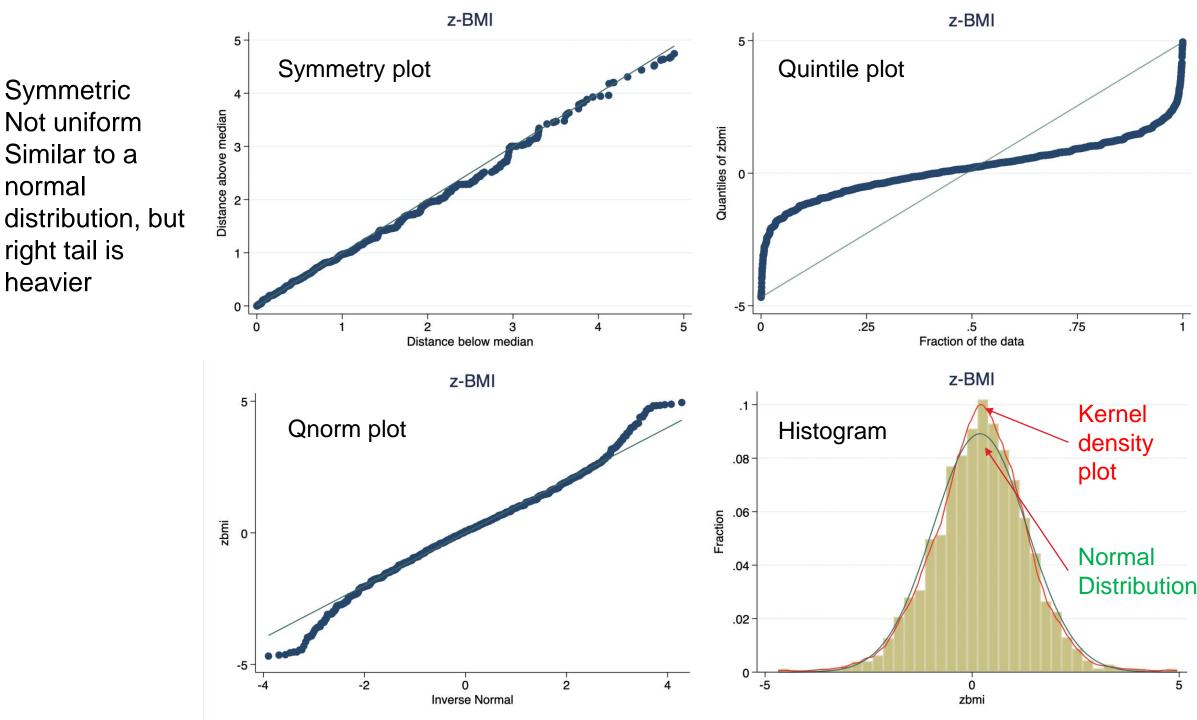


Graphical tools: Box and Violin plot


It shows:

- Median
- Quartiles divide a sample on 4 intervals, with cut points dividing the range of sample in intervals with equal probabilities.
- Interquartile range (IQR): the distance between the upper and lower quartiles
- The bottom/top wiskers show the Q1-1.5*IQR and Q3+1.5*IQR
- Outliers

Graphical tools: Box and Violin plot – Stata

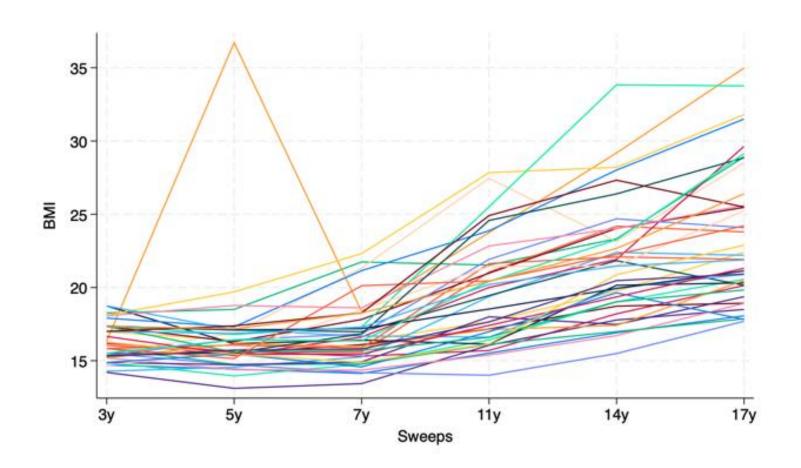

graph box sd_apch_bmi if age==5 , ///
title(SD Arc Percentage change in BMI (ages 3-17)) ///
plotregion(fcolor(white)) graphregion(fcolor(white)) ///
ytitle("")

vioplot sd_apch_bmi if age==5 , ///
title(SD Arc Percentage change in BMI (ages 3-17)) ///
plotregion(fcolor(white)) graphregion(fcolor(white)) ///
xlabel("")

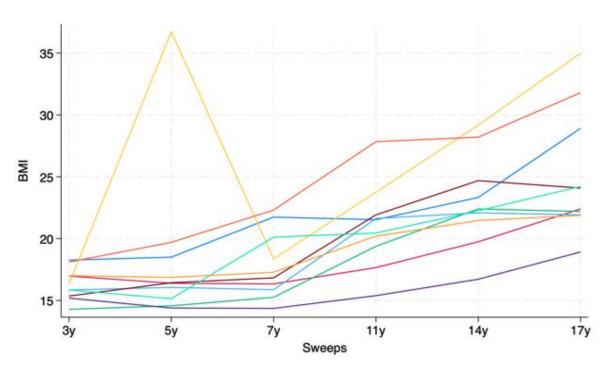
Graphical tools: Distributional diagnostic plots

- Compare the distribution of variables against a known distribution (normal, uniform, etc.)
 - Symmetry plot check if the data is symmetric around the mean
 - Quintile plot compares with a uniform distribution
 - Qnorm plot compares normal distribution
 - Histogram Kernel density plots

•

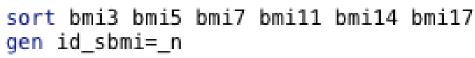

Graphical tools: Spaghetti and Lasagne plot

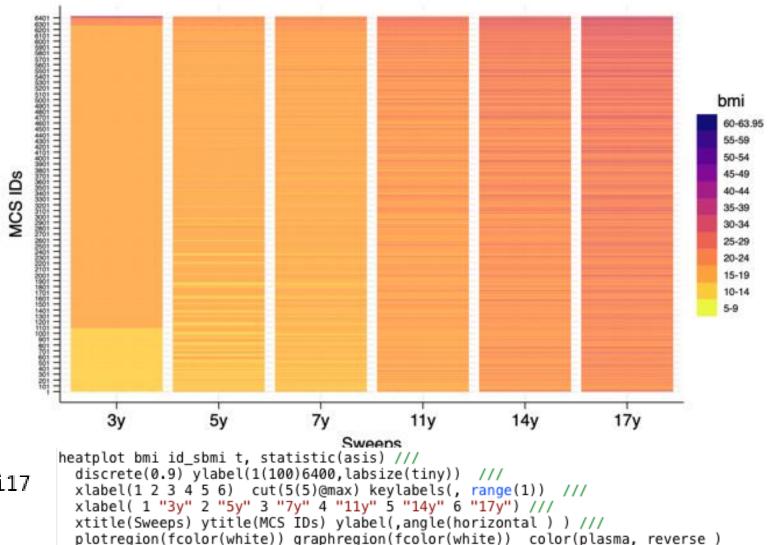
- Used to represent the observed heterogeneity on unit trends over time.
- Trends are represented using individual lines (spaghettis) that connect observed values over time.
- Lasagne plot are heat plots that use horizontal layers instead of lines to represent individual changes over time.


Graphical tools: Spaghetti plot

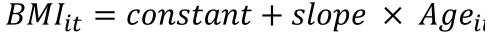
- Sort data in wide format by variable of interest (BMI)
- Plot a random sample of units
- Useful to visualise different likely trajectories

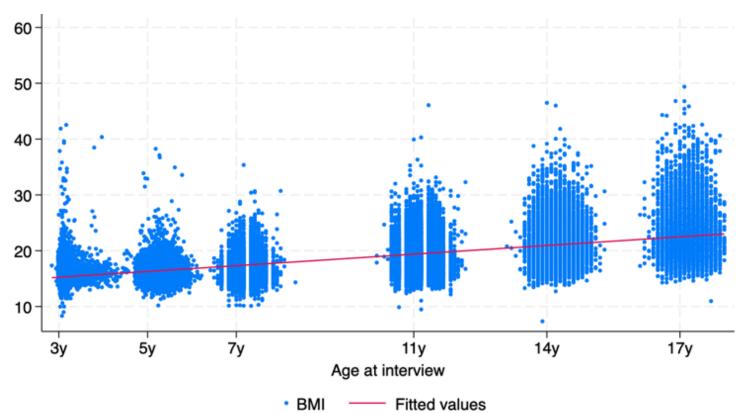
Graphical tools: Spaghetti plot - Stata


set seed 321
generate u1 = runiform()
sort u1
gen sample10=_n<=10
gen sample20=_n<=20
gen sample30=_n<=30
gen sample40= n<=40</pre>


xtline bmi if sample40==1, overlay legend(off) ///
xlabel(1 "3y" 2 "5y" 3 "7y" 4 "11y" 5 "14y" 6 "17y") ///
xtitle(Sweeps) ytitle(BMI) ylabel(,angle(horizontal)) ///
plotregion(fcolor(white)) graphregion(fcolor(white))

Graphical tools: Lasagne plot - Stata


- Sort data in wide format by variable of interest (BMI)
 - id_sbmi
- Useful to visualise all possible trajectories



Descriptive statistics Correlation and Linear regression

- Is there a linear association between BMI at age 5 and BMI at age 7?
- What is the best fitting line to summarise the trend between age and BMI?

CENTRE FOR

STUDIES

Descriptive statistics - Correlation

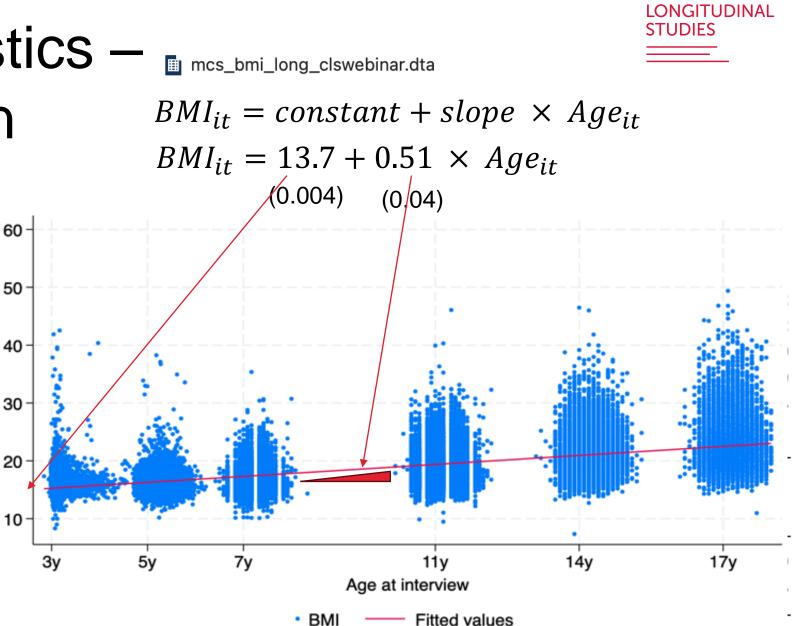
corr bmi5 bmi7 bmi11 bmi14 bmi17

Indicate the degree of linear association between two variables without implying causation.

Wide Structure: Used to analyse association between variables over time

Long Structure: Used to analyse association between outcome variable with time/period

	BMI 5	BMI 7	BMI 11	BMI 14	BMI 17
BMI 5	1.00				
BMI 7	0.72	1.00			
BMI 11	0.58	0.78	1.00		
BMI 14	0.52	0.70	0.83	1.00	
BMI 17	0.48	0.64	0.75	0.85	1.00


→ corr bmi age

	Age
BMI	0.62

Descriptive statistics -Linear regression

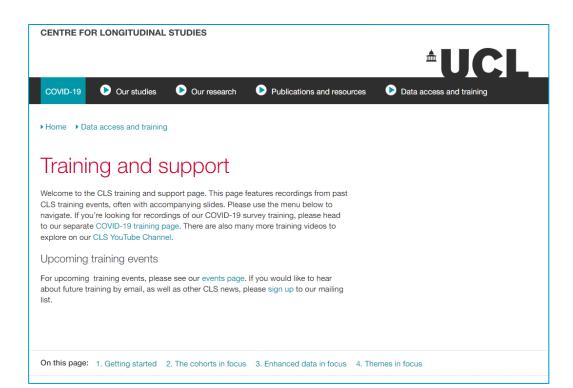
Our best linear prediction summarise the relationship between age and BMI.

• BMI increases with age

CENTRE FOR

Longitudinal Data Visualisation: summary

- Introduce simple and useful tools to descriptive and visualise longitudinal data (Categorical/Continuous variables; Box/Violin/Spaghetti/Lasagne)
- Focus: understanding change and trajectories of key variable
 - What about multivariable?
- Descriptive and graphical analyses of longitudinal data help us to better understand our key variables. It's a useful first step!



Questions?

Upcoming Training Events in early 2024

- Ageing in the British cohort studies: measurement, research and access
- Genetic data: An overview of genetic data in the British cohort studies
- Methods: Cross-cohort analyses

https://cls.ucl.ac.uk/events/

https://cls.ucl.ac.uk/data-accesstraining/training-and-support-2/

Introduction to Longitudinal Data Structure and Visualisation Nicolás Libuy, <u>nicolas.libuy@ucl.ac.uk</u> Darío Moreno-Agostino, <u>d.moreno@ucl.ac.uk</u>

CENTRE FOR LONGITUDINAL STUDIES

Economic and Social Research Council