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Missing data 

Non-response is common in longitudinal surveys. Missing values due to non-

response mean less efficient estimates because of the reduced size of the of the 

analysis sample, but also introduce the potential for bias since respondents are often 

systematically different from non-respondents. 

Missing data are typically characterised by their corresponding missing data 

mechanism: (i) missing completely at random (MCAR), meaning that missingness 

does not depend on either observed or unobserved values (i.e. is completely at 

random); (ii) missing at random (MAR), meaning that, given the observed values, 

missingness does not depend on unobserved values; or (iii) missing not at random 

(MNAR), meaning that missingness depends on unobserved (and possibly observed) 

values [1, 2].  

A complete case analysis (one restricted to study participants with complete data) is 

valid if data are MCAR, but also under MNAR if missingness is independent of the 

outcome variable given the covariates in the model [3]. If data are MAR then popular 

analysis approaches include multiple imputation (MI) [2, 4, 5], inverse probability 

weighting (IPW) [6, 7], and full information maximum likelihood (FIML) [8, 9]. 

NCDS Missing Data Strategy 

Identifying predictors of non-response can help make the MAR assumption more 

plausible and has implications for missing data analysis with principled methods such 

as MI, IPW and FIML.  

In the National Child Development Survey (NCDS; 1958 British Birth Cohort) we have 

implemented a systematic data-driven approach to identify predictors of non-

response at Sweeps 1-9 [10]. We found disadvantaged socio-economic background 

in childhood, worse mental health and lower cognitive ability in early life, and lack of 

civic and social participation in adulthood to be consistently associated with non-

response. A full list of the identified predictors of non-response at each sweep is 

available in the Appendix. For details of the approach used in identifying these 

variables we refer you to the published paper [10]. 
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These variables can be straightforwardly used as “auxiliary variables”, i.e. variables 

not in the substantive model of interest, in analyses with principled methods. Their 

appropriate use can help maximise the plausibility of the MAR assumption in order to 

reduce bias due to missing data and have the potential to restore sample 

representativeness in NCDS. 

Non-dynamic longitudinal models (regression based analyses, including interactions 

and/or formal mediation, using data from at least two stages of the life course) are 

most common among NCDS analyses (>80% of papers). In such analyses, MI is 

plausible and arguably more flexible than FIML since auxiliary variables are more 

easily included in the imputation phase. 

Dynamic longitudinal models (explicitly quantifying change over time, for example 

growth models, mixture modules, latent transitions models, fixed/random effects, 

multilevel models, generalised estimating equations, generalised methods of 

moments) are less common in NCDS. In such analyses, it is more difficult to 

incorporate the longitudinal structure into the imputation model. FIML is more flexible, 

so may be preferred, but approaches and related software for incorporating 

hierarchal/multilevel structures in the imputation phase are available [5, 11, 12]. 

The approach to missing data handling outlined in this User Guide should not be 

viewed as a roadmap to undertaking the single recommended analysis in the 

presence of missing data. Precisely how a given analysis should be undertaken will 

inevitably depend on a variety of factors, such as the research question of interest, 

the availability of data, and the analysis model being used, which are largely beyond 

the scope of this User Guide. The aim of the User Guide is simply to describe and 

illustrate a straightforward approach to missing data handling, while detailing some 

more general considerations around missing data along the way. 

Multiple imputation 

In MI, the analyst specifies an appropriate imputation model, from which a series of 

imputed datasets are created. Each imputed data set is analysed using the 

substantive model of interest and the results are combined using standard rules [2], 

resulting in standard errors that incorporate the variability in results between the 
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imputed data sets. In this way, uncertainty about the missing data is appropriately 

accounted for in the inference. Over recent years, MI has been widely adopted 

because it is practical for applied researchers in a wide range of settings and can be 

undertaken using standard statistical software [5].  

Due to its applicability in the majority of typical NCDS analyses and its ease of use 

with standard software, this User Guide will focus on MI. It will take you through the 

recommended steps of conducting an MI analysis using NCDS data in Stata 

according to the NCDS Missing Data Strategy. There exist many general guides to 

conducting MI analyses in Stata, alongside the very detailed Stata help files (starting 

from help mi). This User Guide will focus on the most relevant issues and 

commands for undertaking the most common types of analyses of NCDS data. 

Running example 

The application of the NCDS Missing Data Strategy will be illustrated through the use 

of a running example examining the association between partnership status at age 

42 (ParStat42R) and income at age 55 (total_income55)[13]. Partnership status at 

age 42 is a 3-level categorical variable (married/cohabiting vs. 

separated/divorced/widowed vs. single and never married) and income at age 55 is a 

continuous variable measured in British Pounds per week, log-transformed prior to 

analysis (log_total_income55) to deal with the characteristic positive skew of income 

data. Data at age 55 were collected using a sequential mixed mode design, but this 

feature will not be considered further here. 

While this example has been chosen to closely resemble the sort of analysis that 

may be undertaken in practice, the results obtained should not be over-interpreted 

from a substantive perspective as some features of the analysis would likely be 

undertaken differently were this a “real” analysis. 

The analysis of interest is a linear regression of log_total_income55 on ParStat42R 

adjusted for a number of potential confounders relating to birth (sex, birthweight, 

maternal smoking during pregnancy, maternal age, breastfeeding), the cohort 

member’s parents (mother working up to 5, parents read to child, parental interest in 

school, divorce, separation from child, mother not married), socioeconomic position 

https://www.stata.com/help.cgi?mi
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(paternal social class at birth, financial difficulties, housing tenure, housing 

difficulties), early life (cognitive ability, enuresis, summary of objectively assessed 

health conditions, body mass index, mental health, behaviour), and midlife (age 42) 

(income, economic activity, mental health, education, chronic illness, disability). The 

variables included in the analysis model are listed in the below table. 
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Outcome/ 

exposure/ 

covariate 

Covariate domain Variable description Variable name Variable type 

Outcome  Log-transformed total income at age 55 log_total_income55 Continuous 

Exposure  Partnership status at age 42 ParStat42R Categorical 

Covariate Birth Sex n622 Binary 

Covariate Birth Birthweight LBW Binary 

Covariate Birth Maternal smoking during pregnancy smpreg Binary 

Covariate Birth Maternal age n553 Continuous 

Covariate Birth Breastfeeding bfever Binary 

Covariate Cohort member’s parents Mother working up to 5 maw5 Binary 

Covariate Cohort member’s parents Parents read to child MotherNeverReads7 Binary 

Covariate Cohort member’s parents Parental interest in school NoIntEdu Binary 

Covariate Cohort member’s parents Parental divorce DivBy7 Binary 

Covariate Cohort member’s parents Separation from child SepMore1Month Binary 

Covariate Cohort member’s parents Mother not married MumNotMarried Binary 

Covariate Socioeconomic position Paternal social class at birth SocialClassHusband Categorical 

Covariate Socioeconomic position Financial difficulties DiffucultiesFinancial Binary 
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Outcome/ 

exposure/ 

covariate 

Covariate domain Variable description Variable name Variable type 

Covariate Socioeconomic position Housing tenure HousingTenure_7 Binary 

Covariate Socioeconomic position Housing difficulties DiffucultiesHousing Binary 

Covariate Early life Cognitive ability CogAbil7 Continuous 

Covariate Early life Enuresis enuresis7 Binary 

Covariate Early life Summary of objectively assessed health conditions MedExSum7 Continuous 

Covariate Early life Body mass index BMI7 Continuous 

Covariate Early life Mental health PsychoMed Binary 

Covariate Early life Behaviour a16_totalscore Continuous 

Covariate Midlife Log-transformed total income log_total_income42 Continuous 

Covariate Midlife Economic activity EconAct42R Categorical 

Covariate Midlife Mental health Mal24Age42 Continuous 

Covariate Midlife Education NVQ42R Categorical 

Covariate Midlife Chronic illness lsiany2 Binary 

Covariate Midlife Disability dmdisab Binary 
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A complete case analysis (see below) uses data from only 1896 cohort members and 

estimates coefficients of -0.18 (95% confidence interval [CI] -0.36, 0.01) comparing 

separated/divorced/widowed to married/cohabiting and -0.37 (95% CI -0.55, -0.18) 

comparing single and never married to married/cohabiting. These correspond to 16% 

(exp(-0.18) = 0.84) and 31% (exp(-0.37) = 0.69) lower income respectively. 

 

. regress log_total_income55 i.ParStat42R n622 LBW smpreg n553 bfever maw5 MotherNeverReads7    

  NoIntEdu DivBy7 SepMore1Month MumNotMarried i.SocialClassHusband DiffucultiesFinancial  

  HousingTenure_7 DiffucultiesHousing CogAbil7 enuresis7 MedExSum7 BMI7 PsychoMed a16_totalscore  

  log_total_income42 i.EconAct42R Mal24Age42 i.NVQ42R lsiany2 dmdisab 

 

      Source |       SS           df       MS      Number of obs   =     1,896 

-------------+----------------------------------   F(37, 1858)     =      5.41 

       Model |  244.643966        37  6.61199909   Prob > F        =    0.0000 

    Residual |  2272.29158     1,858  1.22297717   R-squared       =    0.0972 

-------------+----------------------------------   Adj R-squared   =    0.0792 

       Total |  2516.93554     1,895  1.32819818   Root MSE        =    1.1059 

 

--------------------------------------------------------------------------------------------- 

         log_total_income55 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------------------+---------------------------------------------------------------- 

                 ParStat42R | 

Seperated/Divorced/Widowed  |  -.1760115   .0936201    -1.88   0.060     -.359623    .0076001 

       Single/NeverMarried  |  -.3652557   .0947965    -3.85   0.000    -.5511745   -.1793368 

[Output omitted] 

 

------------------------------------------------------------------------------------------ 

 

However, the 1896 cohort members included in the complete case analysis are only 

a small proportion of the available NCDS sample. Of the original NCDS sample, 

15,613 were alive and had not emigrated by age 55, of whom 9137 provided 

responses for at least some of the items at age 55, though only 6306 of these had 

data on income at age 55. The other variables in the analysis, being collected at 

earlier sweeps and of a less sensitive nature than income, have even lower levels of 

missingness. 

Inferences from the complete case analysis only necessarily relate to the population 

of individuals with complete data on these specific variables. In general, this will not 

be the population to which we would wish inferences to relate. It is important to 
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consider the “target population” of a given analysis as this helps assess the extent to 

which specific analytical approaches (for example, complete case analysis or MI) will 

be able to address the research question of interest.  

An exploration of the extent of missingness in the analysis variables can be 

conducted using the misstable summarize command (see help misstable). 

As well as exploring the extent of missingness in the analysis variables, it can also be 

helpful to examine the patterns of missing data (i.e. precisely which variables are 

missing for each NCDS participant). This can be undertaken using misstable 

patterns (see help misstable) (and graphical visualisations may also be also 

be helpful [14]), but these can become more difficult to interpret when the number of 

included variables is high (for example, with 29 variables there are 229 > 0.5 billion 

possible missing data patterns, though clearly not all of these could be observed in 

the dataset). 

  

https://www.stata.com/help.cgi?misstable
https://www.stata.com/help.cgi?misstable
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. misstable summarize log_total_income55 ParStat42R n622 LBW smpreg n553 bfever maw5  

  MotherNeverReads7 NoIntEdu DivBy7 SepMore1Month MumNotMarried SocialClassHusband  

  DiffucultiesFinancial HousingTenure_7 DiffucultiesHousing CogAbil7 enuresis7 MedExSum7 BMI7  

  PsychoMed a16_totalscore Log_total_income42 EconAct42R Mal24Age42 NVQ42R lsiany2 dmdisab 

 

                                                               Obs<. 

                                                +------------------------------ 

               |                                | Unique 

      Variable |     Obs=.     Obs>.     Obs<.  | values        Min         Max 

  -------------+--------------------------------+------------------------------ 

  log_total~55 |     9,307               6,306  |   >500          0    8.146998 

    ParStat42R |     4,651              10,962  |      3          1           3 

          n622 |         1              15,612  |      2          0           1 

           LBW |     1,442              14,171  |      2          0           1 

        smpreg |     1,148              14,465  |      2          0           1 

          n553 |       972              14,641  |     35          8          47 

        bfever |     2,596              13,017  |      2          0           1 

          maw5 |     3,069              12,544  |      2          0           1 

  MotherNeve~7 |     2,639              12,974  |      2          0           1 

      NoIntEdu |     3,124              12,489  |      2          0           1 

        DivBy7 |     3,098              12,515  |      2          0           1 

  SepMore1Mo~h |     2,832              12,781  |      2          0           1 

  MumNotMarr~d |       970              14,643  |      2          0           1 

  SocialClas~d |     1,723              13,890  |      4          2           5 

  Diffuculti~l |     3,901              11,712  |      2          0           1 

  HousingTen~7 |     2,532              13,081  |      2          0           1 

  Diffuculti~g |     3,196              12,417  |      2          0           1 

      CogAbil7 |     2,675              12,938  |   >500  -3.411307    2.172811 

     enuresis7 |     2,552              13,061  |      2          0           1 

     MedExSum7 |     2,350              13,263  |     24          0          23 

          BMI7 |     3,663              11,950  |   >500   9.280806    28.97114 

     PsychoMed |     3,919              11,694  |      2          0           1 

  a16_totals~e |     5,116              10,497  |     31          0          31 

  log_total~42 |     6,326               9,287  |   >500          0    8.318254 

    EconAct42R |     4,729              10,884  |      5          1           5 

    Mal24Age42 |     4,595              11,018  |     25          0          24 

        NVQ42R |     4,615              10,998  |      5          0           4 

       lsiany2 |     4,637              10,976  |      2          0           1 

       dmdisab |     4,596              11,017  |      2          0           1 

  ----------------------------------------------------------------------------- 

 

It is also sensible to explore the extent to which the distributions of the analysis 

variables differ between the complete cases and the non-complete cases. In the 

presence of a MCAR mechanism, the distributions of all variables should be the 
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same (allowing for sampling variability) in the two groups. If it appears that there are 

systematic differences between the two groups, then this is suggestive of a MAR or 

MNAR mechanism. This is an important distinction as a complete case analysis 

would be valid under MCAR, but not (generally) under MAR or MNAR. 

Below, we derive a variable which indicates whether a cohort member is included in 

the complete case analysis and then see whether the distributions of analysis 

variables differ between complete cases and non-complete cases, using tabstat 

for continuous variable and tabulate for binary/categorical variables. 

. quietly regress log_total_income55 i.ParStat42R n622 n553 BMI7 CogAbil7 MedExSum7  

  a16_totalscore log_total_income42 dmdisab lsiany2 SepMore1Month MotherNeverReads7 NoIntEdu  

  smpreg maw5 HousingTenure_7 DiffucultiesHousing DiffucultiesFinancial DivBy7 LBW bfever  

  enuresis7 MumNotMarried PsychoMed i.NVQ42R i.SocialClassHusband Mal24Age42 i.EconAct42R 

. gen cc = e(sample) 

 

. foreach var in log_total_income55 n553 CogAbil7 MedExSum7 BMI7 a16_totalscore  

  log_total_income42 Mal24Age42 { 

    tabstat `var', by(cc) stat(n mean sd) 

  } 

 

. foreach var in n622 dmdisab lsiany2 SepMore1Month MotherNeverReads7 NoIntEdu smpreg maw5  

  HousingTenure_7 DiffucultiesHousing DiffucultiesFinancial DivBy7 LBW bfever enuresis7  

  MumNotMarried PsychoMed NVQ42R SocialClassHusband ParStat42R EconAct42R { 

    tab `var' cc, col 

  } 

 

Some variables, such as BMI at age 7, are well balanced (mean 15.9 kg/m2 in both 

groups): 

Summary for variables: BMI7 

     by categories of: cc  

 

      cc |         N      mean        sd 

---------+------------------------------ 

       0 |     10054  15.91879   1.79659 

       1 |      1896  15.89221  1.728181 

---------+------------------------------ 

   Total |     11950  15.91457  1.785867 

---------------------------------------- 
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Other variables, such as parental divorce, display clear imbalances (1.6% in 

complete cases, 4.5% in non-complete cases): 

+-------------------+ 

| Key               | 

|-------------------| 

|     frequency     | 

| column percentage | 

+-------------------+ 

 

Divorce/se | 

  peration |          cc 

      by 7 |         0          1 |     Total 

-----------+----------------------+---------- 

        No |    10,142      1,866 |    12,008  

           |     95.51      98.42 |     95.95  

-----------+----------------------+---------- 

       Yes |       477         30 |       507  

           |      4.49       1.58 |      4.05  

-----------+----------------------+---------- 

     Total |    10,619      1,896 |    12,515  

           |    100.00     100.00 |    100.00  

 

          Pearson chi2(1) =  35.0398 

 

More formal statistical testing of differences between the groups could also be 

conducted, for example through use of t-tests or chi-squared tests (subject to the 

usual underlying assumptions). 

Analysing such a small proportion of the available data may raise concerns over the 

potential for bias and will certainly lead to imprecision in the results obtained. 

Application of a principled method for missing data handling would therefore be a 

sensible next step in the analysis. Over the next few sections of this User Guide we 

will explore how MI could be applied, in generality and then in this analysis 

specifically. 
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Deciding on the set of auxiliary variables 

In MI, the analyst first specifies an appropriate imputation model, from which a series 

of imputed datasets are created. The imputation model should include all the 

variables in the substantive model (exposure(s), outcome(s), confounder(s), etc.) in 

the form in which they will enter the analysis model (i.e. subsequent to any recoding 

or transformations). Any interactions between two or more variables within the 

substantive model must be explicitly included in the imputation model. This ensures 

that the imputation model is “congenial” or “consistent” with the analysis model. 

Omission of, say, an interaction term from the imputation model would imply that 

values are being imputed assuming zero interaction. If this interaction were of 

substantive interest in the analysis then it would be, unsurprisingly, less likely to be 

apparent in the MI analysis. Such considerations are therefore very important. 

The imputation model should also include the following sets of auxiliary (i.e. not 

included in the substantive model) variables: 

• Variables that are predictive of both the probability of missingness and the 

underlying missing values themselves. (In our example, variables that are 

associated with non-response and income, as the association with income will 

increase the likelihood of association with missing values of income.) 

• Variables that are predictive of the underlying missing values only. (In our 

example, variables associated with income.) 

As missing data in NCDS is largely driven by non-response at a given sweep (as 

opposed to item non-response within sweeps), the first of these auxiliary variables 

can be selected from the pre-determined sets of variables predictive of non-response 

at each sweep (see Appendix). The second of these auxiliary variables should be 

selected using a combination of substantive/theoretical knowledge and exploration of 

the data. 

A further consideration is the completeness of potential auxiliary variables. All other 

things being equal, more complete variables should be preferred. Auxiliary variables 

with very little missing data themselves will add information to the imputation model, 

improving the quality of the imputed values; auxiliary variables with extensive 



 

14 
 

missingness add limited information to the imputation model and will themselves 

largely require imputing, adding further uncertainty. As missingness in NCDS (as in 

almost all cohort studies) increases as time progresses, this suggests favouring 

auxiliary variables from earlier sweeps, though should not rule out variables from 

later sweeps with high levels of completeness. 

Example 

In our running example, the variables in the substantive model are those in the 

corresponding complete case analysis (exposure, outcome and potential 

confounders). 

Missingness is largely driven by non-response at the age 55 sweep (since non-

respondents at previous sweeps are usually, though not always, also non-

respondents at this sweep). Variables that are predictive of non-response at age 55 

are precisely those identified in Table 10 of the Appendix. There are 31 such 

variables in total, though 5 of these already appear in the substantive model and 

therefore do not require further consideration here. The remaining 26 variables could 

all be included in the imputation model as auxiliary variables, but there is evidence to 

suggest that variables that are predictive of the chance of missing values but are not 

predictive of the underlying missing values themselves will not add information, so 

should not be included in the imputation model [5]. We therefore examine which of 

these 26 variables that are predictive of non-response at age 55 are also predictive 

of income at age 55, using the observed data. 

. foreach var in aconnn512 aconnn504 i.acatnn660 bbinnn194 bconnage7dv10 genability11  

  Ext11Dec18 dbinnn2250 dconnn1721 i.dcatnn2888 dconnn2930 Ext16MTDec18 i.ecatnn5113  

  ebinnn5960 fbinn502977 fconnn504361_cont fbinnn504636_bin fbinntenure91_bin  

  fconndvsoccapital_cont gbindmpart Org42 mconngenhlth i.hcatnnd7ms_cat iconnnd8nchtt_cont  

  ibinn8j2101 NR08priorNR { 

  regress log_total_income55 `var' 

  testparm `var' 

  } 

 

We find that 21 of the 26 variables are associated with income at age 55 with p < 

0.001 so are included as auxiliary variables in the imputation model. The p < 0.001 

level is essentially arbitrary, but in this instance ensures that we have a reasonable 
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number of this type of auxiliary variable in the imputation model. If you had a smaller 

pool of potential variables to choose from, then you may wish to be more liberal with 

your p-value cut-off to ensure that sufficient variables enter the imputation model; if 

you have a larger pool of potential variables to choose from, then you may wish to be 

even more stringent with your p-value cut-off to prevent so many auxiliary variables 

entering the model so as to make it unstable. The key here is to avoid including 

variables that are completely unassociated with the underlying values of the 

variable(s) subject to missingness (income in this instance); whether or not variables 

that are only weakly associated with the underlying values enter the imputation model 

should not have a substantial impact on the MI analysis. One may consider 

eschewing a p-value-based approach altogether and selecting variables from the 

pool of predictors of non-response based on the magnitude of their association with 

the underlying values (e.g. linear regression coefficient, odds ratio, risk ratio). Whilst 

this is straightforward for binary predictor variables, for continuous predictor variables 

the magnitude of the association will be scale-dependent, and for categorical 

variables there will be multiple estimated associations with magnitudes dependent on 

the choice of baseline category, so this type of approach requires careful 

consideration. Alternatively, a machine learning approach to variable selection, such 

as the lasso [15], could be considered. 

Variables that are predictive of the underlying missing values but not predictive of the 

chance of missing values should also be included. Here we include two such 

variables: income at age 46 (total_income46) and income at age 50 

(total_income50), both of which are again log-transformed prior to imputation 

(log_total_income46 and log_total_income50). It is perhaps worth noting that these 

variables, being observed subsequently to the exposure (age 42) and prior to the 

outcome (age 55), are potentially on the causal pathway (i.e. mediators) between the 

two. In an analysis where the objective was to estimate the total effect of exposure on 

outcome, such potential mediators should not be included in the analysis model. 

However, this is not a concern when constructing an imputation model; here the 

interest is in leveraging the statistical association with the outcome variable in order 

to improve the quality of the imputed values. 
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Developing the imputation model 

Different imputation approaches are available in Stata (see help mi impute): 

monotone, chained or mvn. “Monotone” is a sequential approach using a monotone 

missing pattern; “chained” is a sequential approach using chained equations; “mvn” 

uses multivariate normal regression. 

In the general setting (i.e. if missingness is known not to be monotone), we 

recommend imputation using chained equations, implemented using mi impute 

chained (see help mi impute chained). Imputation using chained equations 

fills in missing values in multiple variables iteratively by using chained equations, a 

sequence of univariate imputation models with fully conditional specification of 

prediction equations, accommodating arbitrary missing value patterns. 

Consider the appropriate type of imputation model for each variable requiring 

imputation. Stata’s mi impute chained command can accommodate a variety of 

models including: 

• Linear regression (regress) for continuous/linear variables 

• Logistic regression (logit) for binary variables 

• Ordinal logistic regression (ologit) for ordered categorical variables where 

the proportional odds assumption can be assumed to hold 

• Multinomial logistic regression (mlogit) for unordered categorical variables 

(or ordered categorical variables where the proportional odds assumption 

cannot be assumed to hold) 

• Poisson regression (poisson) for count variables. 

  

https://www.stata.com/help.cgi?mi+impute
https://www.stata.com/help.cgi?mi+impute+chained
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Example 

It is important to gain some familiarity with the data prior to undertaking any analysis, 

and MI analyses are no exception. Numerical summaries (e.g. summarize; see 

help summarize), tabulations (e.g. tabulate; see help tabulate) and 

graphical approaches (e.g. histogram; see help histogram) can all be used to 

examine the distributions of the variables to be included in the imputation model. 

Transformations may be considered for skewed continuous variables (as we have 

already applied to the heavily skewed income variables). However, there is evidence 

that MI is relatively robust to the assumption of normality if the amount of missing 

information is low [14]. 

The imputation model in our example contains 52 variables of different types, as 

follows: 

 
Continuous/linear 

(regress) 

Binary 

(logistic) 

Unordered 

categorical 

(mlogit) 

Total 

Variables in the substantive model 8 17 4 29 

Variables predictive of both non-

response and underlying missing 

values (auxiliary) 

11 7 3 21 

Variables predictive of underlying 

missing values only (auxiliary) 
2 0 0 2 

Note that our substantive model does not include any interactions. Even so, we could 

choose to include any interactions we thought relevant in the imputation model, 

though in this example analysis we have not done so. 

Recoding variables 

Binary variables to be modelled using logistic regression (logit) need to be coded 

so that they take values 0 and a non-zero integer (usually 1).  

https://www.stata.com/help.cgi?summarize
https://www.stata.com/help.cgi?tabulate
https://www.stata.com/help.cgi?histogram
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Multinomial logistic regression (mlogit) models used to model unordered 

categorical variables (or ordered categorical variables where the proportional odds 

assumptions cannot be assumed to hold) with many levels are often unstable and 

can prevent the imputation model from converging. It may therefore be advisable to 

collapse together some categories of such unordered categorical variables to form a 

variable with fewer levels. This can be done in an iterative manner – i) conduct the 

imputation (see later section) using the unordered categorical variable in its current 

form; ii) if the multinomial logistic regression imputation model relating to this variable 

fails to converge, then recode the variable to have fewer levels – repeated until 

convergence. 

Example 

In our example, the variable representing a cohort member’s sex (n622) was 

originally coded 1 = “Male” and 2 = “Female”, so was recoded to be 0 = “Male” and 1 

= “Female”. 

There are seven unordered categorical variables (or ordered categorical variables 

where we did not want to make the proportional odds assumption), with between 3 

and 5 categories per variable. We decided to retain these variables in their original 

form, conduct the imputation, then consider recoding them only if the multinomial 

logistic regression imputation model relating to one or more of these variables fails to 

converge. 

Preparing the data for imputation 

Prior to undertaking the imputation, the data need to be specified as an MI dataset 

using the mi set command (see help mi set). The data are given a specific 

style: wide, mlong, flong, or flongsep.  We recommend using the wide style in most 

instances. 

The variables should then be registered as being either imputed, passive or regular 

using the mi register command (see help mi register). “Imputed” variables 

are variables that have missing values and for which you will have imputations; 

“passive” variables are variables that are a function of imputed variables or of other 

https://www.stata.com/help.cgi?mi+set
https://www.stata.com/help.cgi?mi+set
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passive variables; “regular” variables are variables that are neither imputed nor 

passive and that have the same values, whether missing or not, in all imputed 

datasets. 

Once the data are registered, the variable _mi_miss indicates observations which are 

incomplete (as opposed to fully observed) across the registered variables. It is 

required to run analyses on the imputed data. 

Example 

We first mi set and then mi register the data: 

. mi set wide 

 

. mi register imputed /// 

  log_total_income55 ParStat42R n622 LBW smpreg n553 bfever maw5 MotherNeverReads7 NoIntEdu  

  DivBy7 SepMore1Month MumNotMarried SocialClassHusband DiffucultiesFinancial HousingTenure_7  

  DiffucultiesHousing CogAbil7 enuresis7 MedExSum7 BMI7 PsychoMed a16_totalscore  

  log_total_income42 EconAct42R Mal24Age42 NVQ42R lsiany2 dmdisab /// 

  /// 

  aconnn512 aconnn504 acatnn660 bbinnn194 bconnage7dv10 genability11 dbinnn2250 

  dconnn1721 dcatnn2888 dconnn2930 Ext16MTDec18 ebinnn5960 fbinn502977 fconnn504361_cont 

  fbinntenure91_bin fconndvsoccapital_cont Org42 mconngenhlth hcatnnd7ms_cat 

  iconnnd8nchtt_cont ibinn8j2101 /// 

  /// 

  log_total_income46 log_total_income50 

 

(In the above code a /// has been used to insert a gap between the different types 

of variables in the imputation model, but this is not necessary.) 

A new variable _mi_miss has now been created. 

. tab _mi_miss 

 

   _mi_miss |      Freq.     Percent        Cum. 

------------+----------------------------------- 

          0 |        538        3.45        3.45 

          1 |     15,075       96.55      100.00  

------------+----------------------------------- 

      Total |     15,613      100.00 
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This shows that only 538 cohort members are non-missing for all 51 variables in the 

imputation model. 

Conducting the imputation 

If using imputation by chained equations (mi impute chained; see help mi 

impute chained), the imputation model is specified by stating each model type 

(regress, logit, etc.) followed by the list of variables to be modelled using that 

model type. By default, all variables are included in each univariate imputation model 

(i.e. one as the outcome, all the others as the explanatory variables). When a 

variable is to be modelled by ologit or mlogit, Stata recognises this as a 

categorical variable and handles it as such when it appears as an explanatory 

variable in other univariate imputation models (i.e. as if the i. prefix had been 

specified in a standard regression model). 

When modelling binary or categorical variables (i.e. when using logit, ologit or 

mlogit), difficulties can be encountered when certain combinations of explanatory 

variables lead to predicted outcome probabilities very close to 0 or 1 (so called 

“perfect prediction”). Augmented versions of these regressions, in which a few 

observations with small weights are added to the data during estimation to avoid 

perfect prediction, can be utilised when perfect prediction is detected through use of 

the augment option. In many applications of MI such use of augmented regression is 

necessary to obtain successful model convergence. 

As noted previously, the imputation model should include all the variables in the 

substantive model in the form in which they will enter the analysis model, including 

any interactions between two or more variables, to ensure that it is “congenial” or 

“consistent” with the analysis model. Deciding on the optimal approach for including 

interactions within the imputation model has generated much debate within the MI 

literature. The prevailing opinion at present is to treat interaction terms as “just 

another variable” – that is, generate a new variable representing your interaction term 

using the observed data (e.g. for a interaction between variables X1 and X2, X1X2 = 

X1 x X2), then include this variable in the imputation model in exactly the same way 

you would if it were any other variable [16]. Whilst the resulting imputed interaction 

https://www.stata.com/help.cgi?mi+impute+chained
https://www.stata.com/help.cgi?mi+impute+chained
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values will then not necessarily equal the product of the imputed individual variables 

within a given imputed dataset, this approach has been found to perform well in 

simulation studies. An alternative approach when at least one of the variables in the 

interaction is binary or categorical is to perform the imputation separately within strata 

of the data defined by the observed values of that variable. This can be achieved by 

using the by(varlist) option within mi impute (see help mi impute). For 

example, if variable X1 was binary (coded 0/1), then using the by(X1) option would 

cause the imputation to be performed separately in those with X1 = 0 and those with 

X1 = 1. The association between X2 and all other variables in the imputation model 

would then be allowed to differ depending on the value of X1, as required. However, 

since only a subset of the data are used, this approach can be susceptible to 

convergence issues, particularly with small overall sample sizes, complex imputation 

models, and/or large numbers of categories in the interaction variable. 

The number of imputed datasets to be added is controlled by the add(#) option. 

How many imputations should you use? While a small number of imputations (say 5-

20) may be sufficient for reliable estimation of point estimates in most situations, 

estimating p-values with little error requires a greater number of imputations (perhaps 

100 or more) [5, 17]. Such large numbers of imputations can be computationally time-

consuming with large samples and/or large numbers of variables in the imputation 

model. We suggest that 50 imputations would be sufficient in most situations. 

However, in order to ensure that the imputation procedure is working as intended, it 

may be sensible to initially run a “test” imputation of, say, 5 imputations. 

It can be helpful for troubleshooting to review the output from all the fitted imputation 

models. The output can be produced by using the noisily option and saved in a 

log file. 

Similarly, it can be helpful to examine the means and standard deviations of imputed 

values from each iteration of the imputation (the “trace data”). These data can be 

saved to a separate data file using the savetrace(filename) option. 

The rseed(#) option allows you to specify the random-number seed of the 

imputation procedure, making the results exactly reproducible if run again on a 

different occasion.  

https://www.stata.com/help.cgi?mi+impute
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The burnin(#) option specifies number of iterations for the burn-in period (how 

many times all the univariate imputation models are fitted before each set of imputed 

values is drawn). The default is 10, which is often sufficient, but may need to be 

increased in some cases (see later section on “Checking the imputed values”). 

After conducting the MI, Stata creates a number of new variables with the prefixes 

_1_, _2_, … , _M_ (where M is the total number of imputed datasets), which are the 

variables containing the imputed values (in addition to the observed values) for each 

variable within each imputed dataset. 

Example 

We perform the imputation using mi impute chained. 

. mi impute chained /// 

  /// 

  (logit, augment) n622 dmdisab lsiany2 SepMore1Month MotherNeverReads7 NoIntEdu smpreg maw5  

  HousingTenure_7 DiffucultiesHousing DiffucultiesFinancial DivBy7 LBW bfever enuresis7  

  MumNotMarried PsychoMed bbinnn194 dbinnn2250 ebinnn5960 fbinn502977 fbinntenure91_bin Org42  

  ibinn8j2101 /// 

  /// 

  (mlogit, augment) NVQ42R SocialClassHusband ParStat42R EconAct42R acatnn660 dcatnn2888  

  hcatnnd7ms_cat /// 

  /// 

  (regress) log_total_income55 Mal24Age42 n553 BMI7 CogAbil7 MedExSum7 a16_totalscore  

  log_total_income42 aconnn512 aconnn504 bconnage7dv10 genability11 dconnn1721 dconnn2930  

  Ext16MTDec18 fconnn504361_cont fconndvsoccapital_cont mconngenhlth iconnnd8nchtt_cont  

  log_total_income46 log_total_income50 /// 

  /// 

  , rseed(12345) dots noisily force add(5) savetrace(MI_test_trace, replace) 

 

As noted previously, there are no interactions in this MI model. 

Initially we produce just 5 imputed datasets (add(5)) to test that the imputation 

procedure is working correctly. Subsequently we would want to run the code again, 

increasing the number of imputations.  

Note that the burnin(#) option has not been specified, so the default of 10 will be 

used. 
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In addition, you would probably want to open a log file prior to running the above 

code (log using; see help log) and close it afterwards (log close), as well as 

saving the imputed dataset at the end (save; see help save). 

Troubleshooting the imputation 

With only a small number of variables in an imputation model, the procedure will 

usually converge successfully with no problems. With a greater number of variables, 

convergence issues and other problems will often be encountered. Here, we describe 

some of the more common problems. 

If the model fitting procedure continues to iterate without the log-likelihood being 

maximised (i.e. non-convergence), there is an underlying issue with the specification 

of the current univariate imputation model which needs to be rectified. As highlighted 

above, this is of particular relevance for multinomial logistic regression (mlogit) 

models used to model unordered categorical variables (or ordered categorical 

variables where the proportional odds assumptions cannot be assumed to hold) with 

many levels. In such cases, it may be advisable to collapse together some categories 

of the unordered categorical variable to form a variable with fewer levels. 

The imputation procedure may cease prematurely with the error message “perfect 

predictor(s) detected”. As noted above, this “perfect prediction” can occur when 

modelling binary or categorical variables (i.e. when using logit, ologt or mlogit), and 

relates to certain combinations of explanatory variables leading to predicted outcome 

probabilities very close to 0 or 1. Augmented versions of these regressions, in which 

a few observations with small weights are added to the data during estimation to 

avoid perfect prediction, can be utilised when perfect prediction is detected through 

use of the augment option in mi impute. The above error message suggests that 

the augment option was not specified but should be.  

A related warning message is that a certain expression "predicts success perfectly" 

and that a number of observations have been dropped. This warning message may 

be present even if the imputation procedure has completed successfully (which would 

require the specification of the augment option in mi impute). It suggests that there 

https://www.stata.com/help.cgi?log
https://www.stata.com/help.cgi?save
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is an issue involving two categorical variables in the imputation model: for a certain 

level of a categorical variable (identified in the warning message), the outcome 

variable of the univariate imputation model always takes the same value. This can be 

straightforwardly diagnosed by cross-tabulating the two variables concerned and 

identifying the perfect prediction. It can be rectified by collapsing together categories 

of one of the variables until perfect prediction no longer occurs. If both variables 

concerned are binary then no such recoding is possible and one of the variables will 

need to be excluded from the imputation model. 

Example 

In our example analysis the MI procedure converged successfully and none of the 

above issues were apparent. 

Checking the imputed values 

Having conducted the imputation and saved the imputed datasets, it is important to 

check that the imputed values themselves appear sensible.  

One approach is to plot the means and standard deviations of imputed values from 

each iteration of the imputation (“trace data”), saved as part of the imputation 

procedure (see “Conducting the imputation” section). The dataset containing the 

means and standard deviations of imputed values should be opened and these 

values plotted against the iteration number for each imputed variable separately. A 

useful command for doing so is xtline (see help xtline) as it allows the values 

for each imputed dataset to be plotted in a different colour. Using these plots one can 

examine whether the means and standard deviations of imputed values have 

sufficiently stabilised over the course of the iterations in the burn-in period. An 

underlying trend in the trace data is not in itself problematic, but if such a trend 

remains at the end of the burn-in period (and looks like it would continue in 

subsequent iterations) it suggests that the values had not sufficiently stabilised at the 

end of burn-in period when the values for each imputed dataset were drawn. In such 

situations the imputation model should be re-fitted with a greater number of iterations 

in the burn-in period using the burnin(#) option of mi impute chained. 

https://www.stata.com/help.cgi?xtline
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It is also good practice to compare the distributions of variables between the 

observed data and the imputed datasets. There are many approaches one could use 

to achieve this, for example plotting histograms for continuous variables and 

comparing prevalences for binary/categorical variables. Substantial differences 

between the distributions of observed and imputed variables should be investigated 

further. However, differences themselves are not necessarily indicative of a problem 

– it may be that the underlying values of a variable should differ between individuals 

with observed data and individuals with missing data, and therefore the imputation 

procedure is providing appropriate imputations. Moreover, the whole rationale for MI 

is that we are in essence imputing a distribution of plausible values rather than a 

single value, and therefore a given imputed value (i.e. a given draw from this 

distribution) should not be over-interpreted in isolation. 

Example 

The below code will loop through each variable in the imputation model in turn, 

producing plots of the means and standard deviations of imputed values from each 

iteration of the imputation against the imputation number (“trace plots”), with a 

different coloured line for each imputation. The pause command (see help pause) 

means that once each plot has been produced Stata will wait before producing the 

next plot (otherwise it would be produced before you had chance to examine the 

previous one). To move to the next plot type “end” or “q”; to exit the plots completely 

type “BREAK”. 

. pause on 

. foreach var in log_total_income55 ParStat42R n622 n553 BMI7 CogAbil7 MedExSum7 /// 

  a16_totalscore log_total_income42 dmdisab lsiany2 SepMore1Month MotherNeverReads7 NoIntEdu /// 

  smpreg maw5 HousingTenure_7 DiffucultiesHousing DiffucultiesFinancial DivBy7 LBW /// 

  bfever enuresis7 MumNotMarried PsychoMed NVQ42R SocialClassHusband Mal24Age42 EconAct42R /// 

  /// 

  aconnn512 aconnn504 acatnn660 bbinnn194 bconnage7dv10 genability11 dbinnn2250 dconnn1721 /// 

  dcatnn2888 dconnn2930 Ext16MTDec18 ebinnn5960 fbinn502977 fconnn504361_cont ///  

  fbinntenure91_bin fconndvsoccapital_cont Org42 mconngenhlth hcatnnd7ms_cat ///  

  iconnnd8nchtt_cont ibinn8j2101 /// 

  /// 

  log_total_income46 log_total_income50 { 

    xtline `var'_mean, t(iter) i(m) overlay legend(off) name(graph1, replace) 

    xtline `var'_sd, t(iter) i(m) overlay legend(off) name(graph2, replace) 

    graph combine graph1 graph2, xcommon cols(1) 

https://www.stata.com/help.cgi?pause
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    pause 

  }  

. pause off 

 

For most variables, the means and standard deviations of imputed values appear to 

have sufficiently stabilised over the course of the iterations in the burn-in period. For 

a few variables there remains an underlying trend in the means and/or standard 

deviations at the end of the burn-in period, suggesting that the imputation model 

should be re-fitted with a greater number of iterations in the burn-in period. For 

example, ParStat42R: 

 

The below code will loop through each continuous variable in the imputation model in 

turn, producing histograms of the values in the observed data and then in each 

imputed dataset separately, before combining them at the end. The pause command 

is used as above. 

. pause on 

. foreach var of varlist log_total_income55 Mal24Age42 n553 BMI7 CogAbil7 MedExSum7 /// 

  a16_totalscore log_total_income42 /// 

  aconnn512 aconnn504 bconnage7dv10 genability11 dconnn1721 dconnn2930 Ext16MTDec18 /// 

  fconnn504361_cont fconndvsoccapital_cont mconngenhlth iconnnd8nchtt_cont /// 
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  log_total_income46 log_total_income50 { 

    hist `var', name(graph0, replace) 

    hist _1_`var', name(graph1, replace) 

    hist _2_`var', name(graph2, replace) 

    hist _3_`var', name(graph3, replace) 

    hist _4_`var', name(graph4, replace) 

    hist _5_`var', name(graph5, replace) 

    graph combine graph0 graph1 graph2 graph3 graph4 graph5, xcommon ycommon 

    pause 

  } 

. pause off 

 

The plots for BMI at age 7 (BMI7) show that the distributions of values in the imputed 

datasets (note that this includes both imputed and observed values) are very similar 

to the distribution of values in the observed sample. However, as noted above, even 

if the distributions did differ somewhat, this is not necessarily a cause for concern, 

though substantial differences should be investigated further. 

 

The below code will loop through each binary/categorical variable in the imputation 

model in turn, displaying a tabulation of the values in the observed data and then in 

each imputed dataset separately. 
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. foreach var of varlist n622 dmdisab lsiany2 SepMore1Month MotherNeverReads7 NoIntEdu /// 

  smpreg maw5 HousingTenure_7 DiffucultiesHousing DiffucultiesFinancial DivBy7 LBW bfever /// 

  enuresis7 MumNotMarried PsychoMed NVQ42R SocialClassHusband ParStat42R EconAct42R /// 

  bbinnn194 dbinnn2250 ebinnn5960 fbinn502977 fbinntenure91_bin Org42 ibinn8j2101 acatnn660 /// 

  dcatnn2888 hcatnnd7ms_cat { 

  tab1 `var' _1_`var' _2_`var' _3_`var' _4_`var' _5_`var' 

} 

 

The tabulations for chronic illness (lsiany2) show a prevalence of 28.8% among the 

10,976 cohort members with observed data on this variable, but a prevalence of 

30.0% among the 15,613 cohort members alive and still living in Britain at Sweep 9 in 

the first imputed dataset (noting again that this includes both imputed and observed 

values). Prevalences in the other four imputed datasets (not shown in the interest of 

space) ranged between 29.6% and 30.2%. Such small differences should not be 

unexpected – if we think that cohort members with chronic illness may be more likely 

to drop out of the study then the prevalence of chronic illness post-imputation should 

be somewhat greater than in the observed data. However, as noted previously, more 

substantial differences should be investigated further. 

-> tabulation of lsiany2   

 

   1st long | 

   standing | 

    illness |      Freq.     Percent        Cum. 

------------+----------------------------------- 

         No |      7,820       71.25       71.25 

        Yes |      3,156       28.75      100.00 

------------+----------------------------------- 

      Total |     10,976      100.00 
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-> tabulation of _1_lsiany2   

 

 _1_lsiany2 |      Freq.     Percent        Cum. 

------------+----------------------------------- 

          0 |     10,926       69.98       69.98 

          1 |      4,687       30.02      100.00 

------------+----------------------------------- 

      Total |     15,613      100.00 

 

Once the above checks of the imputed values have been satisfactorily concluded 

using the test dataset of 5 imputations, the imputation model should be re-fitted using 

a greater number of imputations (here we use 50) and with a greater number of 

iterations in the burn-in period if this was deemed necessary (here we use 20). The 

checks of the imputed values should then be repeated on the new imputed dataset to 

ensure that everything now/still looks okay. 

Fitting the analysis model 

The analysis model can be fitted using mi estimate (see help mi estimate), 

which is followed by whatever command would usually (i.e. in the non-MI setting) be 

used to fit the analysis model. A useful option here is dots, which displays dots in 

the Stata results window as the estimations are performed within each imputed 

dataset (indicating that progress is being made, which otherwise would not be 

apparent). The output produced in the Stata results window in relation to the fitted 

model will be very similar to that produced by the same command in the non-MI 

setting, with some additional MI-specific information (number of imputations, etc.) at 

the top. 

While there is consensus in the MI literature that imputation should be conducted 

using all individuals in the sample, there remains some debate around who should be 

included in the MI analysis model in the case where there is imputation of the 

outcome variable. If no auxiliary variables are included in the imputation model, then 

the only information being used in the imputation of the outcome variable is that 

contained within the analysis model and there is therefore no advantage (in terms of 

bias reduction) in including imputed values of the outcome in the MI analysis – 

https://www.stata.com/help.cgi?mi+estimate
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indeed this may just add noise. This suggests an “impute and delete” approach 

whereby missing values of the outcome variable are imputed during the imputation 

phase but then deleted prior to (or at least excluded from) the analysis phase [18]. 

On the other hand, if strong predictors of the underlying values of the outcome 

variable are included in the imputation model as auxiliary variables, then there is 

additional information in the imputation model beyond that in the analysis model, and 

the imputed values of the outcome variable should be retained in the MI analysis 

model. How strong do predictors of the underlying values of the outcome variable 

have to be for this to be the case? This will depend on the specifics of the analysis. A 

further consideration is that the greater the number of individuals included in an MI 

analysis, the more precise the estimates (in general). All other things being equal, 

one would therefore try to include as many individuals as possible in the MI analysis, 

but not (in general) at the expense of introducing (or limiting the reduction of) bias. 

Whilst these may be more statistical considerations, the choice of the MI analysis 

sample has implications on the interpretation of any findings, as it contributes to the 

definition of the target population to which sample inferences are being made.  

The issue of who to include in the MI analysis is therefore a little complex, and 

inevitably this will differ by context. One suggestion would be to perform the analysis 

using different analysis samples in order to explore the sensitivity of the findings to 

this issue. 
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Example 

In our example we have imputed missing data using the full dataset of 15,613 cohort 

members who were alive and had not emigrated by age 55. Of these, 6306 cohort 

members had data on income at age 55, so we would certainly feel comfortable 

analysing these individuals. However, because we included auxiliary variables which 

we believe are strongly predictive of the outcome variable (income at earlier ages) we 

are happy to extend our MI analysis sample to include all 9137 Sweep 9 (age 55) 

respondents. All subsequent analyses will relate to this sample. (In fact, we did 

repeat the MI analysis using both the 6306 cohort members with observed income 

data at age 55 and all 15,613 cohort members who were alive and had not emigrated 

by age 55, and the results were very similar to those presented below.)  

The MI analysis model is fitted using the same regress command as in the 

complete case analysis, but now preceded by the mi estimate command. The 

variable NR09 is an indicator variable for non-response at Sweep 9, so using the 

subsample with NR09 = 0 is just restricting the model fitting to the 9137 Sweep 9 

(age 55) respondents. Note that we are now using the full imputed dataset with 50 

imputations. 

. mi estimate, dots: regress log_total_income55 i.ParStat42R n622 n553 BMI7 CogAbil7 MedExSum7  

  a16_totalscore Log_total_income42 dmdisab lsiany2 SepMore1Month MotherNeverReads7 NoIntEdu 

  smpreg maw5 HousingTenure_7 DiffucultiesHousing DiffucultiesFinancial DivBy7 LBW 

  bfever enuresis7 MumNotMarried PsychoMed i.NVQ42R i.SocialClassHusband Mal24Age42 

  i.EconAct42R if NR09==0 

 

Imputations (50): 

  .........10.........20.........30.........40.........50 done 

 

Multiple-imputation estimates                   Imputations       =         50 

Linear regression                               Number of obs     =      9,137 

                                                Average RVI       =     0.6292 

                                                Largest FMI       =     0.5454 

                                                Complete DF       =       9099 

DF adjustment:   Small sample                   DF:     min       =     161.58 

                                                        avg       =     321.56 

                                                        max       =     476.02 

Model F test:       Equal FMI                   F(  37, 5173.5)   =      20.67 

Within VCE type:          OLS                   Prob > F          =     0.0000 
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--------------------------------------------------------------------------------------------- 

         log_total_income55 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------------------+---------------------------------------------------------------- 

                 ParStat42R | 

Seperated/Divorced/Widowed  |  -.1442798    .049738    -2.90   0.004    -.2420863   -.0464733 

       Single/NeverMarried  |  -.3962706   .0546227    -7.25   0.000    -.5036618   -.2888793 

                             

[Output omitted] 

--------------------------------------------------------------------------------------------- 

 

The MI analysis used data from 9137 cohort members and estimates coefficients of -

0.14 (95% CI -0.24, -0.05) comparing separated/divorced/widowed to 

married/cohabiting and -0.40 (95% CI -0.50, -0.29) comparing single and never 

married to married/cohabiting. These correspond to 13% (exp(-0.14) = 0.87) and 

33% (exp(-0.40) = 0.67) lower income respectively. 

Comparing the results from the complete case and MI analyses (see below table), we 

note a number of differences. In the MI analysis the coefficients differ, though only 

slightly, from those in the complete case analysis. If we believe that data are MAR 

then the MI analysis will (assuming we have correctly specified our imputation model) 

give us unbiased results, whereas the complete case analysis will not, and we should 

interpret the difference between the two sets of results as being suggestive of bias in 

the complete case analysis. The MI analysis includes a greater number of cohort 

members. These 9137 cohort members represent all Sweep 9 respondents, including 

the 1896 complete cases included in the complete case analysis, 4410 additional 

cohort members who had observed income at age 55 data but who were missing 

data on one or more other analysis variables, and a further 2831 cohort members 

who were missing income data at age 55 (and may or may not have also been 

missing data on one or more other analysis variables). As well as the potential to 

reduce bias in the estimated coefficients, a consequence of utilising all this additional 

information is increased precision – the standard errors of the coefficients in the MI 

analysis are reduced by almost a half and the 95% CIs are therefore much narrower. 
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Analysis Category Coefficient 
Standard 

error 
95% CI 

Complete case Married/cohabiting 0.00  (ref) 

(n = 1896) Separated/divorced/widowed  -0.18 0.09 -0.36, 0.01 

 Single and never married -0.37 0.09 -0.55, -0.18 

MI Married/cohabiting 0.00  (ref) 

(n = 9137) Separated/divorced/widowed  -0.14 0.05 -0.24, -0.05 

 Single and never married -0.40 0.05 -0.51, -0.29 

Checking the analysis model 

It is good practice to perform some additional checks once the analysis model has 

been fitted. The mi estimate command can be reissued with the vartable and 

dftable options (but without specifying the analysis model) (see help mi 

estimate).  

vartable displays a table reporting variance information about MI estimates. The 

table contains estimates of within-imputation variances, between-imputation 

variances, total variances, relative increases in variance due to nonresponse (RVI), 

fractions of information about parameter estimates missing due to nonresponse 

(FMI), and relative efficiencies for using the chosen number of imputations rather 

than a hypothetically infinite number of imputations. The RVI is the proportional 

increase in total sampling variance that is due to missing information. Variables with 

large amounts of missing data and/or that are weakly correlated with other variables 

in the imputation model will tend to have high RVIs. The closer this number is to zero, 

the less effect missing data have on the variance of the estimate. The FMI is the 

proportion of the total sampling variance that is due to missing data. The higher the 

FMI is, the greater the number of imputations required for reliable results. One rule of 

thumb is to have the number imputations (at least) equal the highest FMI percentage. 

The relative efficiency is an estimate of the efficiency (how well the true population 

parameters are estimated) relative to performing an infinite number of imputations. If 

https://www.stata.com/help.cgi?mi+estimate
https://www.stata.com/help.cgi?mi+estimate
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the relative efficiency is not close to 1, then it indicates that the analysis should be 

repeated with a greater number of imputations. 

dftable displays a table containing parameter-specific degrees of freedom (DF) 

and percentages of increase in standard errors due to nonresponse. The parameter-

specific degrees of freedom depend not only on the number of imputations but also 

(inversely) on the RVI due to nonresponse. The closer the RVI is to zero, the larger 

the degrees of freedom regardless of the number of imputations. 

Example 

The tables corresponding to the above fitted model are shown below (with some 

variables omitted for brevity). In the table produced by vartable, we see that for 

many variables the between-imputation variability is quite large relative to the within-

imputation variability, leading to high RVI and FMI values. For example, 

a16_totalscore has a RVI of 1.17, indicating that much of the total variance is due to 

between-imputation variability, and a FMI of 0.55, indicating that much of the total 

sampling variance is due to missing data. This FMI value (which was also the highest 

of the omitted values) suggests that at least ~50 imputations are required for reliable 

results, and we also note that the relative efficiency is close to 1 for all variables, so 

we can be reasonably confident in the results using 50 imputations. 
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. mi estimate, vartable 

 

Multiple-imputation estimates                   Imputations       =         50 

Linear regression 

 

Variance information 

------------------------------------------------------------------------------ 

             |        Imputation variance                             Relative 

             |    Within   Between     Total       RVI       FMI    efficiency 

-------------+---------------------------------------------------------------- 

  ParStat42R | 

Seperated~d  |     .0016   .000857   .002474   .546406   .356685       .992917 

Single/Ne~d  |   .001962   .001002   .002984   .520641    .34558       .993136 

             | 

        n622 |   .000733   .000344   .001084   .478842    .32674       .993508 

        n553 |   4.3e-06   2.8e-06   7.1e-06   .658577      .401       .992044 

        BMI7 |   .000042   .000022   .000064   .525621   .347755       .993093 

    CogAbil7 |   .000299    .00024   .000544   .816857   .454179       .990998 

   MedExSum7 |   .000035   .000019   .000054   .556507   .360938       .992833 

a16_totals~e |   .000012   .000014   .000026    1.1737   .545446       .989209 

 

[Output omitted] 

 

------------------------------------------------------------------------------ 

 

In the output produced by dftable, we see from the header information (which was 

also reported when mi estimate was initially run) that the parameter-specific 

degrees of freedom vary between 162 and 476, with a mean of 322. We see from the 

table output that the smallest degrees of freedom correspond to a16_totalscore, 

which is to be expected given that this variable has the largest RVI. The largest 

degrees of freedom correspond to MumNotMarried (omitted from the below output), 

suggesting that the loss of information due to non-response is the smallest for the 

estimation of this coefficient. Consequently, the percentage increase in standard 

error is largest for a16_totalscore (47.4%) and smallest for MumNotMarried (20.3%). 

 

. mi estimate, dftable 

 

Multiple-imputation estimates                   Imputations       =         50 

Linear regression                               Number of obs     =      9,137 

                                                Average RVI       =     0.6292 

                                                Largest FMI       =     0.5454 

                                                Complete DF       =       9099 
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DF adjustment:   Small sample                   DF:     min       =     161.58 

                                                        avg       =     321.56 

                                                        max       =     476.02 

Model F test:       Equal FMI                   F(  37, 5173.5)   =      20.67 

Within VCE type:          OLS                   Prob > F          =     0.0000 

 

--------------------------------------------------------------------------------------------- 

                            |                                                      % Increase 

         log_total_income55 |      Coef.   Std. Err.      t    P>|t|           DF   Std. Err. 

----------------------------+---------------------------------------------------------------- 

                 ParStat42R | 

Seperated/Divorced/Widowed  |  -.1442798    .049738    -2.90   0.004        367.9       24.35 

       Single/NeverMarried  |  -.3962706   .0546227    -7.25   0.000        390.7       23.31 

                            | 

                       n622 |   .0147763   .0329194     0.45   0.654        434.4       21.61 

                       n553 |   .0018927   .0026708     0.71   0.479        294.1       28.79 

                       BMI7 |  -.0076632   .0079808    -0.96   0.338        386.1       23.52 

                   CogAbil7 |   .0638111   .0233175     2.74   0.007        231.2       34.79 

                  MedExSum7 |   .0063789   .0073428     0.87   0.386        359.7       24.76 

             a16_totalscore |  -.0027983   .0050665    -0.55   0.581        161.6       47.43 

 

[Output omitted] 

 

--------------------------------------------------------------------------------------------- 

Missing not at random sensitivity analyses 

MI will provide unbiased results on the assumption that data are MAR. In practice, it 

is impossible to know that data truly are MAR (as opposed to MNAR) and therefore 

we might wish to explore how robust our results are to the MAR assumption. A 

variety of such “MNAR sensitivity analyses” have been proposed, which typically 

involve imputing data under a MNAR mechanism – or at least approximating the 

results of doing so [5]. One simple approach to this is to take the existing multiply 

imputed (under MAR) datasets, modify the imputed values for one or more subsets of 

the sample according to a MNAR scenario of interest, and re-fit the analysis model. 

Formally, this is a “pattern-mixture model” approach to MNAR sensitivity analysis [5]. 

For example, you may imagine that individuals with lower income might be less likely 

to complete questions on income (even after taking all other available information into 

account). The resultant income data would then be MNAR, as the probability of 
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missingness would be affected by values of the partly-unobserved variable itself. A 

MI analysis of these data would only be unbiased under MAR, so a MNAR sensitivity 

analysis should be undertaken. Using the simple approach to MNAR sensitivity 

analysis mentioned above, hypothesised scenarios such as “study members with 

missing income data have X units lower income than those with observed income 

data” can be explored by subtracting X units from the imputed income values in each 

imputed dataset and re-fitting the analysis model. Assuming that there was previously 

evidence of the association of interest, does this remain the case in the sensitivity 

analysis? Different values of X could be considered in a more thorough sensitivity 

analysis. At what value of X is there no longer evidence of the association of interest? 

How plausible is such a value of X in practice? The MNAR scenarios being 

considered could be more complex, for example the value of X may be hypothesised 

to differ between subgroups defined by another variable (e.g. males and females), 

with the imputed value modification approach extended in the obvious way. 

Example 

As an example, let’s assume we believe that cohort members with lower income at 

age 55 are less likely to report their income than those with higher income, despite 

the richness of the information include in the imputation phase. First, let’s explore the 

hypothesised scenario that “cohort members with missing income at age 55 have 

10% lower income than those with observed income data”. Since we are analysing 

income at age 55 on the log scale, it is more straightforward to consider multiplicative 

(as opposed to additive) differences on the original scale – a 10% reduction on the 

original scale (i.e. multiplying by 0.9) is equivalent to an additive difference of log(0.9) 

= -0.105 on the log scale. 

Having opened our multiply imputed dataset, let’s first generate an indicator variable 

for whether log-income at age 55 is imputed (i.e. whether it is missing in the original 

sample). 

. gen log_total_income55_imputed = (log_total_income55 >= .) 

We now generate a new adjusted log-income variable (log_total_income55_adj) 

within each imputed dataset, which takes the observed value of log_total_income55 

for cohort members in whom income was observed and the imputed value plus 
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log(0.9) (i.e. the imputed value minus 0.105) for cohort members in whom income 

was not observed (i.e. in whom income was imputed). Note that we use the mi 

passive command as a prefix to the generate and replace commands. This 

ensures that the commands are applied within each imputed dataset and that the 

resultant variables are registered as passive variables (recall that “passive” variables 

are variables that are a function of imputed variables or of other passive variables; 

see help mi passive). 

. mi passive: generate log_total_income55_adj = log_total_income55 

. mi passive: replace log_total_income55_adj = log_total_income55_adj + log(0.9) if  

  log_total_income55_imputed==1 

We are now in a position to re-run the analysis using the new adjusted log-income 

variable in place of the original log-income variable. Again, we fit this model to all 

sweep 8 respondents (n = 9,137). 

. mi estimate, dots: regress log_total_income55_adj i.ParStat42R n622 n553 BMI7 CogAbil7  

  MedExSum7 a16_totalscore log_total_income42 dmdisab lsiany2 SepMore1Month MotherNeverReads7  

  NoIntEdu smpreg maw5 HousingTenure_7 DiffucultiesHousing DiffucultiesFinancial DivBy7 LBW  

  bfever enuresis7 MumNotMarried PsychoMed i.NVQ42R i.SocialClassHusband Mal24Age42 i.EconAct42R  

  if NR09==0 

 

Imputations (50): 

  .........10.........20.........30.........40.........50 done 

 

Multiple-imputation estimates                   Imputations       =         50 

Linear regression                               Number of obs     =      9,137 

                                                Average RVI       =     0.6276 

                                                Largest FMI       =     0.5439 

                                                Complete DF       =       9099 

DF adjustment:   Small sample                   DF:     min       =     162.46 

                                                        avg       =     322.63 

                                                        max       =     473.89 

Model F test:       Equal FMI                   F(  37, 5180.6)   =      20.86 

Within VCE type:          OLS                   Prob > F          =     0.0000 

 

--------------------------------------------------------------------------------------------- 

     log_total_income55_adj |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------------------+---------------------------------------------------------------- 

                 ParStat42R | 

Seperated/Divorced/Widowed  |  -.1424689   .0497407    -2.86   0.004    -.2402772   -.0446606 

       Single/NeverMarried  |  -.3949269   .0546427    -7.23   0.000    -.5023546   -.2874992 

                             

https://www.stata.com/help.cgi?mi_passive
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[Output omitted] 

--------------------------------------------------------------------------------------------- 

We see that there is very little change in the estimated coefficients relative to the 

primary analysis. This suggests that the findings are robust to the hypothesised 

scenario that “cohort members with missing income at age 55 have 10% lower 

income than those with observed income data”. We could now continue to explore 

increasingly extreme hypothesised scenarios (20% lower income, 30% lower income, 

etc.) to see whether the findings continue to appear so robust. 
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Inverse probability weighting for missing data handling 

This User Guide has so far focussed on MI as a principled method for missing data 

handling due to its applicability in the majority of typical NCDS analyses and its ease 

of use with standard software. Other approaches are available, and here we will 

briefly discuss the application of inverse probability weighting (IPW) for missing data 

handling [6, 7]. 

As previously discussed, when study respondents are systematically different from 

non-respondents, a complete case analysis will often provide biased estimates. In 

IPW, the complete cases are weighted by the inverse of their probability of being a 

complete case. This means that study members who were unlikely to be a complete 

case (but were anyway) are up-weighted relative to cohort members who were likely 

to be complete cases (and were), so can be conceptualised as the former effectively 

representing both themselves and all other similar study members with missing data. 

How should the probability of being a complete case be estimated? A common 

approach is to identify a set of variables which are predictive of being a complete 

case, which may or may not overlap with the set of variables in the analysis model, 

and fitting a model for being a complete case as a function of these variables. From 

this fitted model, the probability of being a complete case can be predicted for each 

study member. This is a straightforward approach, but a major limitation is that if a 

study member is missing data on any one or more of the variables used to model 

being a complete case, then they will not be included in the sample to which this 

model is fitted and will not have a predicted probability of being a complete case, 

meaning that they cannot be included in the reweighted analysis model. It is possible 

to avoid this by choosing variables which are themselves completely observed as 

predictors of being a complete case. In the birth cohort setting this often means 

restricting to variables observed at or prior to birth. But what if you believe it to be 

important to include such partially observed variables as predictors of being a 

complete case? Methods exist for incorporating predictors subject to monotone 

missingness and more advanced methods can even handle non-monotone 

missingness [7].  
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A straightforward approach that can handle arbitrary missing data patterns would be 

to use MI in the estimation of the probabilities of being a complete case. Values of 

the variables used to model being a complete case would first be imputed, so that the 

models for being a complete case are fitted using all study members, meaning all 

study members have a predicted probability of being a complete case, so can be 

included in the reweighted analysis model. 

In the above described approach, IPW utilises the probability of being a complete 

case. But whether or not a given study member is a complete case will usually 

depend on the analysis model being considered, and therefore any derived 

probabilities are not transportable between analyses, meaning that the probability-

derivation procedure must be repeated on an analysis-specific basis.  

In cohort studies, where attrition is the main driver of missing data, it is often 

sufficient to consider response at the survey sweep where the outcome variable was 

collected as a proxy for being a complete case. Non-responders at this sweep will by 

definition not be complete cases, and responders at this sweep will only not be 

complete cases in the presence of non-monotone attrition (i.e. non-response at 

earlier sweeps causing missingness on analysis variables) or item non-response (on 

any of the analysis variables). 

An alternative approach would therefore be to conduct a non-analysis-specific 

probability-derivation procedure considering response at the survey sweep where the 

outcome variable was collected, rather than being a complete case per se. This 

would still require using MI in the estimation of the probabilities of response to ensure 

that all study members have a predicted probability. The imputation model should 

include predictors of response at the survey sweep where the outcome variable was 

collected, which are exactly the same predictors of non-response that we have been 

considering previously (and which are provided for NCDS Sweeps 1-10 in the 

Appendix). 

Example 

There are 1896 cohort members in the complete case analysis. These are the cohort 

members who would be reweighted in an IPW analysis in order to regain sample 

representativeness. 
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To maintain comparability with our previous MI analyses, we will consider the 21 

predictors of non-response at age 55 that are also associated with income at age 55 

as the predictors of being a complete case. As noted above, in the birth cohort 

setting interest is often restricted to variables observed at or prior to birth to ensure 

that the extent of missing data is minimised, so the conclusions from applying this 

approach should not be assumed to apply to a more typical application of IPW. 

First, we generate a new variable (cc) which is an indicator for being a complete case 

in the analysis model. 

. quietly regress log_total_income55 i.ParStat42R n622 n553 BMI7 CogAbil7 MedExSum7  

  a16_totalscore  Log_total_income42 dmdisab lsiany2 SepMore1Month MotherNeverReads7 NoIntEdu 

  smpreg maw5 HousingTenure_7 DiffucultiesHousing DiffucultiesFinancial DivBy7 LBW bfever  

  enuresis7 MumNotMarried PsychoMed i.NVQ42R i.SocialClassHusband Mal24Age42 i.EconAct42R 

. gen cc = (e(sample)==1) 

Then we fit a logistic regression model for being a complete case in the analysis 

model as a function of the 21 predictors of non-response at age 55. We restrict this 

model to the 9137 Sweep 9 (age 55) respondents, so that the resultant probabilities 

of being a complete case used in the IPW analysis relate to this sub-sample, similarly 

to the previous MI analysis. 

. logit cc aconnn512 aconnn504 i.acatnn660 bbinnn194 bconnage7dv10 genability11 dbinnn2250 /// 

  dconnn1721 i.dcatnn2888 dconnn2930 Ext16MTDec18 ebinnn5960 fbinn502977 fconnn504361_cont /// 

  fbinntenure91_bin fconndvsoccapital_cont Org42 mconngenhlth i.hcatnnd7ms_cat /// 

  iconnnd8nchtt_cont ibinn8j2101 if NR09==0 

 

Logistic regression                             Number of obs     =      1,909 

                                                LR chi2(29)       =      59.83 

                                                Prob > chi2       =     0.0006 

Log likelihood = -1191.1104                     Pseudo R2         =     0.0245 

 

------------------------------------------------------------------------------------------------ 

                            cc |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------------------------+---------------------------------------------------------------- 

                     aconnn512 |   .0457647   .0651298     0.70   0.482    -.0818875    .1734168 

                     aconnn504 |  -.0308995   .0404437    -0.76   0.445    -.1101676    .0483687 

 

Output omitted] 

 

------------------------------------------------------------------------------------------------ 
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Note that this model was only fitted to 1909 cohort members (those with complete 

data on all variables in the model) out of the 9137 Sweep 9 (age 55) respondents. 

We now derive the probabilities of being a complete case according to the above 

model for cohort members included in the complete case analysis, then generate the 

weights as the reciprocal of the probabilities. It is good practice to examine the 

distribution of weights (here we restrict to cohort members included in the complete 

case analysis to whom the weights will be applied) to ensure there are no extremely 

large values which would dominate the IPW analysis, resulting in a large reduction in 

effective sample size [7]. 

 

. predict cc_prob 

. gen cc_wt = 1/cc_prob 

. sum cc_wt if cc==1 

 

    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

      cc_wt2 |        645    2.967592    .8079965   1.695903   6.555767 

 

. hist cc_wt 
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The resultant weights vary between 1.7 and 6.6, with no extreme values. However, 

the weights are only defined for 645 out of the 1896 cohort members in the complete 

case analysis. These are the cohort members with complete data on the 21 

predictors of non-response at age 55 used to model being a complete case. This 

means that the IPW analysis model will only be fitted on these 645 cohort members. 

. regress log_total_income55 i.ParStat42R n622 n553 BMI7 CogAbil7 MedExSum7 a16_totalscore /// 

  Log_total_income42 dmdisab lsiany2 SepMore1Month MotherNeverReads7 NoIntEdu smpreg maw5 /// 

  HousingTenure_7 DiffucultiesHousing DiffucultiesFinancial DivBy7 LBW bfever enuresis7 /// 

  MumNotMarried PsychoMed i.NVQ42R i.SocialClassHusband Mal24Age42 i.EconAct42R /// 

  [pweight = cc_wt] 

(sum of wgt is 1,914.0969414711) 

 

Linear regression                               Number of obs     =        645 

                                                F(37, 607)        =       2.16 

                                                Prob > F          =     0.0001 

                                                R-squared         =     0.1357 

                                                Root MSE          =     1.2082 

 

--------------------------------------------------------------------------------------------- 

                            |               Robust 

         log_total_income55 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------------------+---------------------------------------------------------------- 

                 ParStat42R | 

Seperated/Divorced/Widowed  |   -.173244   .1599381    -1.08   0.279    -.4873433    .1408552 

       Single/NeverMarried  |  -.6940282   .2688696    -2.58   0.010    -1.222056   -.1660007 

 

 [Output omitted] 

 

--------------------------------------------------------------------------------------------- 

As expected, the IPW analysis model is only fitted on 645 cohort members. The 

estimated coefficients of -0.17 (95% CI -0.49, 0.14) comparing 

separated/divorced/widowed to married/cohabiting and -0.69 (95% CI -1.22, -0.17) 

comparing single and never married to married/cohabiting correspond to 16% (exp(-

0.17) = 0.84) and 50% (exp(-0.69) = 0.50) lower income respectively. 

This analysis is inefficient because not all Sweep 9 (age 55) respondents (only 1909 

out of 9137) were used in the derivation of the weights and not all cohort members 

included in the complete case analysis (only 645 out of 1896) were included in the 

IPW analysis. The reason for both these features is missing data on the variables 
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used as predictors of being a complete case (here, the 21 predictors of non-response 

at age 55). 

Alternatively, we could conduct the IPW analysis having first multiply imputed any 

missing values to ensure that there will be no such problems. To illustrate this, we 

use the previously obtained MI dataset (recall that the imputation model contained 52 

variables: 29 in the substantive model, 21 predictive of both non-response and 

underlying missing values and 2 predictive of underlying missing values only). We 

again fit a logistic regression model for being a complete case in the analysis model 

as a function of the 21 predictors of non-response at age 55, restricted to the 9137 

Sweep 9 (age 55) respondents. 

mi estimate, saving(mi_ipw_estfile, replace) dots: logit cc aconnn512 aconnn504 i.acatnn660 /// 

  bbinnn194 bconnage7dv10 genability11 dbinnn2250 dconnn1721 i.dcatnn2888 dconnn2930 /// 

  Ext16MTDec18 ebinnn5960 fbinn502977 fconnn504361_cont fbinntenure91_bin /// 

  fconndvsoccapital_cont Org42 mconngenhlth i.hcatnnd7ms_cat iconnnd8nchtt_cont ibinn8j2101 /// 

  if NR09==0 

 

Imputations (50): 

  .........10.........20.........30.........40.........50 done 

 

Multiple-imputation estimates                   Imputations       =         50 

Logistic regression                             Number of obs     =      9,137 

                                                Average RVI       =     0.1124 

                                                Largest FMI       =     0.2281 

DF adjustment:   Large sample                   DF:     min       =     954.87 

                                                        avg       =  13,493.41 

                                                        max       =  95,278.78 

Model F test:       Equal FMI                   F(  29,130353.5)  =       4.53 

Within VCE type:          OIM                   Prob > F          =     0.0000 

 

------------------------------------------------------------------------------------------------ 

                            cc |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------------------------+---------------------------------------------------------------- 

                     aconnn512 |  -.0501063   .0339963    -1.47   0.141    -.1167399    .0165274 

                     aconnn504 |  -.0018362    .020436    -0.09   0.928    -.0418906    .0382182 

 

[Output omitted] 

 

------------------------------------------------------------------------------------------------ 
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We see that this model was fitted to all 9137 Sweep 9 (age 55) respondents. The 

saving(mi_ipw_estfile) option is necessary here as this file is required by the 

subsequent mi predict command. We again derive the probabilities of being a 

complete case according to the above model, generate the weights as the reciprocal 

of the probabilities, and examine the distribution of weights for cohort members 

included in the complete case analysis. 

. mi predict xb using mi_ipw_estfile 

. mi passive: gen cc_prob = invlogit(xb) 

. mi passive: gen cc_wt = 1/cc_prob 

. sum cc_wt if cc==1 

 

    Variable |        Obs        Mean    Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

       cc_wt |      1,896    4.799125    1.259972   2.573817   15.23007 

 

. hist cc_wt 

 

 

The resultant weights vary between 2.6 and 15.2, with no extreme values. The 

weights are now defined for all 1896 cohort members in the complete case analysis, 

meaning that they will all be included in the IPW analysis model. 
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. regress log_total_income55 i.ParStat42R n622 n553 BMI7 CogAbil7 MedExSum7 a16_totalscore /// 

  Log_total_income42 dmdisab lsiany2 SepMore1Month MotherNeverReads7 NoIntEdu smpreg maw5 /// 

  HousingTenure_7 DiffucultiesHousing DiffucultiesFinancial DivBy7 LBW bfever enuresis7 /// 

  MumNotMarried PsychoMed i.NVQ42R i.SocialClassHusband Mal24Age42 i.EconAct42R /// 

  [pweight = cc_wt] 

(sum of wgt is 9,099.14102745056) 

 

Linear regression                               Number of obs     =      1,896 

                                                F(37, 1858)       =       6.22 

                                                Prob > F          =     0.0000 

                                                R-squared         =     0.1022 

                                                Root MSE          =     1.1211 

 

--------------------------------------------------------------------------------------------- 

                            |               Robust 

         log_total_income55 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

----------------------------+---------------------------------------------------------------- 

                 ParStat42R | 

Seperated/Divorced/Widowed  |   -.146184   .1005034    -1.45   0.146    -.3432955    .0509274 

       Single/NeverMarried  |  -.3128876   .0916653    -3.41   0.001    -.4926654   -.1331097 

 

[Output omitted] 

 

--------------------------------------------------------------------------------------------- 

The estimated coefficients of -0.15 (95% CI -0.34, 0.05) comparing 

separated/divorced/widowed to married/cohabiting and -0.31 (95% CI -0.49, -0.13) 

comparing single and never married to married/cohabiting correspond to 14% (exp(-

0.15) = 0.86) and 27% (exp(-0.31) = 0.73) lower income respectively. 

These estimated coefficients differ markedly from the previous IPW analysis, 

particularly for single and never married (-0.31 vs. -0.69). Given that this is a 

weighted analysis of all 1896 cohort members included in the complete case analysis 

rather than just the 645 cohort members with complete data on the 21 predictors of 

non-response at age 55 used to model being a complete case, this should perhaps 

not be too surprising. 

The MI IPW analysis is also more efficient than the previous IPW analysis because, 

in addition to all cohort members included in the complete case analysis being 

included in the IPW analysis, all Sweep 9 (age 55) respondents were used in the 
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derivation of the weights. This is illustrated by the standard errors in the below table 

(which also includes the previous MI results): those for the first IPW analysis (IPW-

CC) are much larger than those for the second IPW analysis (IPW-MI). 

Analysis Category Coefficient 
Standard 

error 
95% CI 

Complete case Married/cohabiting 0.00  (ref) 

(n = 1896) Separated/divorced/widowed  -0.18 0.09 -0.36, 0.01 

 Single and never married -0.37 0.09 -0.55, -0.18 

MI Married/cohabiting 0.00  (ref) 

(n = 9137) Separated/divorced/widowed  -0.14 0.05 -0.24, -0.05 

 Single and never married -0.40 0.06 -0.50, -0.29 

IPW-CC Married/cohabiting 0.00  (ref) 

(n = 645 -> 9137) Separated/divorced/widowed  -0.17 0.16 -0.49, 0.14 

 Single and never married -0.69 0.27 -1.22, -0.17 

IPW-MI Married/cohabiting 0.00  (ref) 

(n = 1896 -> 9137) Separated/divorced/widowed  -0.15 0.10 -0.34, 0.05 

 Single and never married -0.31 0.09 -0.49, -0.13 

Comparing the IPW results to the complete case and MI results we see that the 

estimated single and never married IPW-CC coefficients differ markedly from the 

complete case/MI coefficients, but the estimated IPW-MI coefficients are somewhat 

closer to the complete case analysis/MI estimates. The IPW-CC standard errors are 

larger than under any other approach, the MI standard errors are the smallest, and 

those for the complete case analysis and IPW-CC are comparable. The IPW-MI 

analysis therefore does not display the efficiency gains seen in the MI analysis 

relative to the complete case analysis, an observation which is true in general [7]. 

Finally, to emphasise a point made earlier, our use of predictors of being a complete 

case from across several sweeps of data collection which are consequently subject 

to high levels of missingness is not typical. The conclusions from applying this 

approach should therefore not be assumed to necessarily apply to more standard 
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applications of IPW, which would typically rely on more completely observed 

variables observed at or prior to birth. However, if variables observed at later sweeps 

of data collection are important predictors of being a complete case then their 

inclusion should be considered, be that via an IPW-based approach or MI. 
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Further reading 

There are many journal articles and books devoted to the handling of missing data 

generally and to specific approaches for doing so. The following are a selection that 

we recommend for further reading (in alphabetical order within section): 

Missing data 

• Daniel RM, Kenward MG, Cousens SN, De Stavola BL. Using causal diagrams to 
guide analysis in missing data problems. Stat Methods Med Res. 2012; 21(3): 
243-56 

• Enders CK. Applied missing data analysis. New York: Guilford; 2010. 

• Little RJA, Rubin DB. Statistical Analysis with Missing Data. Third Edition. 
Hoboken, NJ: John Wiley & Sons; 2020. 

MI 

• Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained 
equations: what is it and how does it work? Int J Methods Psychiatr Res. 2011; 
20(1): 40-9. 

• Carpenter JR, Kenward MG. Multiple Imputation and its Application. Chichester, 
UK: John Wiley & Sons, Ltd; 2013. 

• Harel O, Mitchell EM, Perkins NJ, Cole SR, Tchetgen Tchetgen EJ, Sun B, et al. 
Multiple Imputation for Incomplete Data in Epidemiologic Studies. Am J 
Epidemiol. 2018; 187(3): 576-84. 

• Spratt M, Carpenter J, Sterne JAC, Carlin JB, Heron J, Henderson J, et al. 
Strategies for Multiple Imputation in Longitudinal Studies. American Journal of 
Epidemiology. 2010; 172(4): 478-87. 

• Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple 
imputation for missing data in epidemiological and clinical research: potential and 
pitfalls. BMJ. 2009; 338: b2393. 

• van Buuren S. Flexible Imputation of Missing Data. Second Edition. Boca Raton, 
FL: CRC Press; 2018. 

• White IR, Royston P, Wood AM. Multiple imputation using chained equations: 
Issues and guidance for practice. Stat Med. 2011; 30(4): 377-99. 

IPW for missing data 

• Seaman SR, White IR. Review of inverse probability weighting for dealing with 
missing data. Stat Methods Med Res. 2013; 22(3): 278-95. 

• Sun B, Perkins NJ, Cole SR, Harel O, Mitchell EM, Schisterman EF, et al. 
Inverse-Probability-Weighted Estimation for Monotone and Nonmonotone Missing 
Data. Am J Epidemiol. 2018; 187(3): 585-91. 
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Appendix 

 

Table 1. Predictors of non-response at Sweep 1 (age 7).  

Sweep Variable description Derived variable name Original variable name 

Sweep 0 (age 0) Region acatnn0region n0region 

 Number of persons per room aconnn512 n512 

 Social class of mother’s husband acatnn236 n236 

 

Table 2. Predictors of non-response at Sweep 2 (age 11).  

Sweep Variable description Derived variable name Original variable name 

Sweep 0 (age 0) Mother's present marital status abinnn545 n545 

Sweep 1 (age 7) Number of kids under 21 in the household, including living away bconnn99 n99 

 Common difficulties age 7 (mother) bconnage7dv1 age7dv1 

 Hospital admissions bconnage7dv5 age7dv5 

 Cognitive ability summary CogAbil7 CogAbil7 

 Non-response at sweep 1 NR01priorNR OUTCME01 
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Table 3. Predictors of non-response at Sweep 3 (age 16). 

Sweep Variable description 
Derived variable 

name 
Original variable name 

Sweep 0 (age 0) Region acatnn0region n0region 

Sweep 1 (age 7) Number of kids under 21 in the household, including living away bconnn99 n99 

 Mother worked birth to 5 maw5 maw5 (from n197/n198) 

 Ever breastfed bfever n222 

Sweep 2 (age 11) Non-response at sweeps 1-2 NR02priorNR 
OUTCME01- 

OUTCME02 
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Table 4. Predictors of non-response at Sweep 4 (age 23).  

Sweep Variable description 
Derived variable 

name 
Original variable name 

Sweep 0 (age 0) Region acatnn0region n0region 

 Number of persons per room aconnn512 n512 

 Sex of child bingender n622 

 Social class of mother’s husband acatnn236 n236 

Sweep 1 (age 7) Family moves since child's birth bcatnn95 n95 

 Cognitive ability summary CogAbil7 CogAbil7 

 Dad reads to child DadNeverReads n180 

Sweep 2 (age 11) Area of world in which mother born ccatnn1434 n1434 

 Number of family moves since child’s birth ccatnn1150 n1150 

 Cognitive ability summary genability11 genability11 

 Number of household amenities Amens Amens 

Sweep 3 (age 16) Number of family moves since child’s birth dconnn2492 n2492 

 Sum of favourable learning environments/outcomes re sex educ etc) dconnage16dv46 age16dv46 

 Conduct problems Ext16MTDec18 Ext16MTDec18 

 Non-response at sweeps 1-3 NR03priorNR OUTCME01-OUTCME03 
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Table 5. Predictors of non-response at Sweep 5 (age 33).  

Sweep Variable description 
Derived variable 

name 
Original variable name 

Sweep 0 (age 0) Number of persons per room aconnn512 n512 

 Sex of child Bingender n622 

 Social class of mother’s husband acatnn236 n236 

Sweep 1 (age 7) Family moves since child's birth bcatnn95 n95 

 Social problems (alcoholism etc.) bconnage7dv10 age7dv10 

 Cognitive ability summary CogAbil7 CogAbil7 

 Summary of medical conditions MedExSum7 MedExSum7 

 Ever breastfed bfever n222 

Sweep 2 (age 11) Child’s positive activities outside school cconnage11dv32 age11dv32 

 Cognitive ability summary genability11 genability11 

 Number of household amenities Amens Amens 

Sweep 3 (age 16) Number of family moves since child’s birth dconnn2492 n2492 

 How long since child drank alcohol dcatnn2888 n2888 

 Test 2 – mathematics comprehension dconnn2930 n2930 

 Sum of favourable learning environments/outcomes re sex educ etc) dconnage16dv46 age16dv46 

Sweep 4 (age 23) Type of current accommodation ecatnn5318 n5318 

 Voted in 1979 general election ebinnn5960 n5960 
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Sweep Variable description 
Derived variable 

name 
Original variable name 

 Economic status ecatneconstrg econstrg 

 Number of voluntary activities (youth club, church etc.) econndv5 dv5 

 Non-response at sweeps 1-4 NR04priorNR OUTCME01-OUTCME04 
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Table 6. Predictors of non-response at Sweep 6 (age 42).  

Sweep Variable description Derived variable name Original variable name 

Sweep 0 (age 0) Number of persons per room aconnn512 n512 

 Sex of child bingender n612 

 Social class of mother’s husband acatnn236 n236 

Sweep 1 (age 7) Cognitive ability summary CogAbil7 CogAbil7 

Sweep 2 (age 11) Area of world in which father born ccatnn1436 n1436 

 Child’s positive activities outside school cconnage11dv32 age11dv32 

 Cognitive ability summary genability11 genability11 

Sweep 3 (age 16) How long since child drank alcohol dcatnn2888 n2888 

 Sum of good activities performed outside school dconnage16dv47 age16dv47 

 Conduct problems [per unit] Ext16MTDec18 Ext16MTDec18 

Sweep 4 (age 23) Legal marital status ecatnn5113 n5113 

 Voted in 1979 general election ebinnn5960 n5960 

Sweep 5 (age 33) Type of accommodation fcatnn502940_cat n502940 

 Current member of a Trade Union/Staff Association fbinnn504646_bin n504646 

 Social capital score (people turn to for advice, support) fconndvsoccapital_cont Dvsoccapital 

 Life contentment score fconndvcontentmnt_cont Dvcontentmnt 

 Non-response at sweeps 1-5 NR05priorNR OUTCME01-OUTCME05 
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Table 7. Predictors of non-response at Biomedical Sweep (age 44).  

Sweep Variable description Derived variable name Original variable name 

Sweep 0 (age 0) Number of persons per room aconnn512 n512 

 Abnormality during pregnancy abinnn522 n522 

 Social class of mother's father when she left school acatnn660 n660 

 Sex of child bingender n622 

 Social class of mother’s husband acatnn236 n236 

Sweep 1 (age 7) Dad stayed on at school after minimum age bbinnn194 n194 

 Attendance bcatnn458 n458 

 Social problems (alcoholism etc.) bconnage7dv10 age7dv10 

 Cognitive ability summary CogAbil7 CogAbil7 

 Body mass index bmi7 bmi7 

Sweep 2 (age 11) Cognitive ability summary genability11 genability11 

Sweep 3 (age 16) Emotional or behavioural problem dbinnn2021 n2021 

 How long since child drank alcohol dcatnn2888 n2888 

 Test 2 – mathematics comprehension dconnn2930 n2930 

 Conduct problems Ext16MTDec18 Ext16MTDec18 

Sweep 4 (age 23) Voted in 1979 general election ebinnn5960 n5960 

Sweep 5 (age 33) Any work related training course since March 1981 fbinn501237 n501237 
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Sweep Variable description Derived variable name Original variable name 

 Number of hospital admissions since March 1981 fconnn504215_cont n504215 

 Driven/ridden after drinking alcohol in last 7 days fcatnn504427_cat n504427 

 Social capital score (people turn to for advice, support) fconndvsoccapital_cont dvsoccapital 

Sweep 6 (age 42) Normally has access to a car or van gcatncaracces Caracces 

 Participated in NCDS V gbindmpart Dmpart 

 Intends to move in near future gbinwantmove wantmove 

 Has a computer at home gbinpchome Pchome 

 Non-response at sweeps 1-6 NR06priorNR OUTCME01-OUTCME06 
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Table 8. Predictors of non-response at Sweep 7 (age 46).  

Sweep Variable description 
Derived variable 

name 
Original variable name 

Sweep 0 (age 0) Number of persons per room aconnn512 n512 

 Sex of child bingender N622 

 Social class of mother’s husband acatnn236 n236 

Sweep 1 (age 7) Dad stayed on at school after minimum age bbinnn194 n194 

 Attendance bcatnn458 n458 

 Social problems (alcoholism etc.) bconnage7dv10 age7dv10 

 Cognitive ability summary [per unit] CogAbil7 CogAbil7 

Sweep 2 (age 11) Source of family income last year cbinnn1176 n1176 

 Child’s positive activities outside school cconnage11dv32 age11dv32 

 Cognitive ability summary genability11 genability11 

Sweep 3 (age 16) Local Authority & voluntary schools dcatnn2102 n2102 

 Wish could leave school at 15 – study child dcatnn2741 n2741 

 How long since child drank alcohol dcatnn2888 n2888 

 Test 2 – mathematics comprehension dconnn2930 n2930 

Sweep 4 (age 23) Number of accidents since 16th birthday econnn5819 n5819 

 Voted in 1979 general election ebinnn5960 n5960 

Sweep 5 (age 33) Voted in 1987 general election fbinnn504636_bin n504636 
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Sweep Variable description 
Derived variable 

name 
Original variable name 

 Social capital score (people turn to for advice, support) fconndvsoccapital_cont dvsoccapital 

Sweep 6 (age 42) Participated in NCDS V gbindmpart dmpart 

 Intends to move in near future gbinwantmove wantmove 

 Membership in organisations Org42 Org42 

Biomedical Sweep (age 

44) 
Current legal marital status mcatnmarital marital 

 Is current accommodation owned or rented? OwnBM Ownhome 

 Non-response at sweeps 1-biomedical NRBMpriorNR OUTCME01-OUTCMEBM 
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Table 9. Predictors of non-response at Sweep 8 (age 50).  

Sweep Variable description Derived variable name Original variable name 

Sweep 0 (age 0) Number of persons per room aconnn512 n512 

 Sex of child bingender n622 

 Social class of mother’s husband acatnn236 n236 

Sweep 1 (age 7) Social problems (alcoholism etc.) bconnage7dv10 age7dv10 

 Cognitive ability summary CogAbil7 CogAbil7 

 Summary of medical conditions MedExSum7 MedExSum7 

Sweep 2 (age 11) Cognitive ability summary genability11 genability11 

 Conduct problems Ext11Dec18 Ext11Dec18 

Sweep 3 (age 16) Child's school attendance dconnn1721 n1721 

 How long since child drank alcohol dcatnn2888 n2888 

 Test 2 – mathematics comprehension dconnn2930 n2930 

 Conduct problems Ext16MTDec18 Ext16MTDec18 

Sweep 4 (age 23) Legal marital status ecatnn5113 n5113 

 Voted in 1979 general election ebinnn5960 n5960 

 Economic status ecatneconstrg econstrg 

Sweep 5 (age 33) Voted in 1987 general election fbinnn504636_bin n504636 

 Social capital score (people turn to for advice, support) fconndvsoccapital_cont Dvsoccapital 
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Sweep Variable description Derived variable name Original variable name 

 Life contentment score fconndvcontentmnt_cont Dvcontentmnt 

Sweep 6 (age 42) Frequency of eating biscuits and cakes of all kinds gconncakes cakes 

 Is current accommodation owned or rented? gbinntenure2 tenure2 

 Participated in NCDS V gbindmpart dmpart 

 Ever wanted improve your maths? gbinmthimp mthimp 

 Membership in organisations Org42 Org42 

Biomedical Sweep 

(age 44) 
Consent to access NHS records mbinnhsok nhsok 

 How many children do you have living with you aged 18 or less mconnchildnow childnow 

 How many natural (biological) children have you ever had mconnchildnum childnum 

Sweep 7 (age 46) Non-response at sweeps 1-7 NR07priorNR OUTCME01-OUTCME07 
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Table 10. Predictors of non-response at sweep 9 (age 55).  

Sweep Variable description 
Derived variable 

name 
Original variable name 

Sweep 0 (age 0) Mother’s age aconnn553 n553 

 Number of persons per room aconnn512 n512 

 Parity aconnn504 n504 

 Social class of mother's father when she left school acatnn660 n660 

 Sex of child bingender n622 

 Social class of mother’s husband acatnn236 n236 

Sweep 1 (age 7) Dad stayed on at school after minimum age bbinnn194 n194 

 Social problems (alcoholism etc.) bconnage7dv10 age7dv10 

 Cognitive ability summary CogAbil7 CogAbil7 

 Ever breastfed bfever n222 

Sweep 2 (age 11) Cognitive ability summary genability11 genability11 

 Conduct problems Ext11Dec18 Ext11Dec18 

Sweep 3 (age 16) Child receiving help at school – backwardness dbinnn2250 n2250 

 Child's school attendance dconnn1721 n1721 

 How long since child drank alcohol dcatnn2888 n2888 

 Test 2 – mathematics comprehension dconnn2930 n2930 

 Conduct problems Ext16MTDec18 Ext16MTDec18 
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Sweep Variable description 
Derived variable 

name 
Original variable name 

Sweep 4 (age 23) Legal marital status ecatnn5113 n5113 

 Voted in 1979 general election ebinnn5960 n5960 

Sweep 5 (age 33) Telephone in home fbinn502977 n502977 

 How much physical effort in job fconnn504361_cont n504361 

 Voted in 1987 general election fbinnn504636_bin n504636 

 Housing tenure fbinntenure91_bin tenure91 

 Social capital score (people turn to for advice, support) fconndvsoccapital_cont dvsoccapital 

Sweep 6 (age 42) Participated in NCDS V gbindmpart dmpart 

 Membership in organisations Org42 Org42 

Biomedical Sweep (age 44) Self-rated general health mconngenhlth genhlth 

Sweep 7 (age 46) Marital status - de facto hcatnnd7ms_cat nd7ms 

Sweep 8 (age 50) Total number of natural children iconnnd8nchtt_cont nd8nchtt 

 Employer provided pension scheme ibinn8j2101 n8j2101 

 Non-response at sweeps 1-8 NR08priorNR OUTCME01-OUTCME08 
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