Data Note 3

Employment and Childbearing: derivation & cleaning of the dataset

Susan Macran

Centre for Longitudinal Studies
Institute of Education
20 Bedford Way
London WC1H 0AL
Tel: 020 7612 6860
Fax: 020 7612 6880
Email cls@cls.ioe.ac.uk
Web http://www.cls.ioe.ac.uk
NATIONAL CHILD DEVELOPMENT STUDY

DATA NOTE 3

Employment and Childbearing:
derivation and cleaning of the dataset

Susan Macran

Variables derived for the ESRC-funded Project:

Employment after childbearing:

Transitions among women born in 1958
Contents:

Introduction ... 3

Employment after Childbearing ... 5

Sources of data on births & children .. 5

Identifying 'Mothers' .. 6

Birth histories & pregnancy histories 8

Section 1:
Derived variables where 'Mothers' are the case 10

Section 2:
Derived variables where 'Months' are the case 49

References ... 50

APPENDIX 1 SPSS code to identify mothers returning to employment after birth

APPENDIX 2 Data cleaning & problem cases in identifying mothers

APPENDIX 3 Derived variables where 'months' are the case

Part 1 Creating an SPSS file where "months" are the case P1
Part 2 Merging files ... P29
Part 3 Frequencies from first birth to interview P30
Part 4 Frequencies from first birth to first job P40
Part 5 Job transitions .. P55
INTRODUCTION

This *NCDS Data Note* introduces a number of variables derived for the purposes of an ESRC-funded project, "Employment after childbearing: Transitions among women born in 1958", from data gathered during the fifth follow-up of the *National Child Development Study (NCDS5)*. The development of the derived variables was accompanied by efforts to resolve a number of data problems (including missing, out-of-range, and inconsistent data), and it is hoped that the information provided below may be of value to others analysing NCDS data.

A brief introduction to NCDS will be followed by details of the project and the variables.

NATIONAL CHILD DEVELOPMENT STUDY

The *National Child Development Study (NCDS)* is a continuing, multi-disciplinary longitudinal study which takes as its subjects all those living in Great Britain who were born between 3 and 9 March, 1958.

Following the initial birth survey in 1958 - the *Perinatal Mortality Survey (PMS)* - there have been, to date, five attempts to trace all members of the birth cohort in order to monitor their physical, educational and social development. These were carried out by the National Children's Bureau in 1965 (*NCDS1*), 1969 (*NCDS2*), 1974 (*NCDS3*), and 1981 (*NCDS4*); and by the Social Statistics Research Unit, City University in 1991 (*NCDS5*). In addition, in 1978, details of public examination entry and performance where obtained from schools and colleges.

For the *PMS* information was obtained from the *mother* and from *medical records* by the midwife. For *NCDS1-3*, information was obtained from: *parents* (by health visitors); *head teachers* and *class teachers* (who completed questionnaires); *medical examination* (carried out by the schools health service); and the *subjects* themselves (who completed tests of ability and, latterly, questionnaires).

NCDS4 differs in that information was obtained from the *subject* by survey research interviewer, and from the *1971 and 1981 Censuses* - from which variables describing area of residence were taken. Similarly, *NCDS5* also relied on survey research interviewers to collect information from *subjects*. Self-completion questionnaires were also used to gather data from NCDS *subjects* and from *husbands, wives, and cohabitees*. In addition, for a random sample of one in three subjects, information was collected for all *natural or adopted children* who were living with them. Data were gathered from the *children* themselves, and from their *mother, or mother-figure* (who might be the cohort member, or their spouse or partner), using a series of age-specific assessments of cognitive and behavioural development. These were supplemented by a *mother interview*, and by *interviewer observations* of mother-child interaction.

During *EXAMS* survey, information was obtained only from *schools and colleges* by postal survey.

In addition information has also been gathered during a number of *NCDS Special Sub-studies* for samples of cohort members selected for their particular characteristics. They include studies of children in care, adoptive children, gifted children, the children of one-parent families, handicapped school leavers, and those suffering from epilepsy, respiratory problems, and Crohn's disease.
Data available for research

The data from the NCDS follow-ups are held by the ESRC Data Archive at the University of Essex and on-line at Manchester Computing Centre. Access to the data is open to anyone interested, although intending users are asked to commit themselves to ensuring that confidentiality is observed, and to inform the NCDS User Support Group at the Centre for Longitudinal Studies about their proposed use of the data and any resulting publications, etc.

The Data Archive also hold data from a number of special sub-studies where additional data has been gathered for samples of cohort members selected for their special characteristics or circumstances.

User Group

This is open to all users of NCDS data. It provides opportunities for users to get together to explore developments, problems, and other issues of mutual interest. Ad hoc "Updates" on NCDS data and developments are circulated to members.

Membership is free on application to the NCDS User Support Group.

User Support Group

This provides advice and guidance on the use of NCDS data; produces documentation; collates and disseminates information on uses of the data, publications, and other developments; produces and distributes a newsletter and working papers; provides access to non-computerised NCDS data; collects additional information; and services the User Group.

The User Support Group can be contacted by post, 'phone, fax, or email as shown below:

Cohort Studies User Support Group,
Centre for Longitudinal Studies,
6th Floor: Institute of Education,
20 Bedford Way,
London WC1H 0AL

Tel: +44 0207 612 6864
Fax: +44 0207 612 6880
Email: cohort@cls.ioe.ac.uk
Internet: http://www.cls.ioe.ac.uk/Cohort/Ncds/mainncds.htm
EMPLOYMENT AFTER CHILDBEARING

The remit of the ESRC-funded project, "Employment after childbearing: Transitions among women born in 1958", was to examine the relationship between motherhood and a woman's experiences of employment. The research was based, primarily, on data taken from the fifth NCDS follow-up (NCDS5) undertaken in 1991 when the members of the birth cohort were 33 years old.

The research was carried out by Professor Heather Joshi and Susan Macran of the Social Statistics Research Unit, City University and by Professor Shirley Dex of the University of Essex, now at Cambridge. The results are reported in the following publications:

The remainder of this Data Note will be concerned with:

* Sources of data on births and children used in the project.

* Identifying "mothers" in NCDS5 using the life histories, the pregnancy histories, and the household grid.

* Birth histories and Pregnancy histories

* Derived variables where "mothers" are the case.

* Derived variables where "months" are the case.

SOURCES OF DATA

Three sources of information on births and children are available in NCDS5:

Your Life since 1974 - a self-completion questionnaire mailed to cohort members for completion before the main interview survey. In this instrument, cohort members were asked to provide a birth history (including dates of birth, birthweight and sex) for all of their natural children.

Pregnancy History Section - part of the main Cohort Member Interview, which gathers details of all pregnancies and their outcomes.
Household Grid Section - another part of the main Cohort Member Interview, which identifies all members in the household, their age, and their relationship to the cohort member.

Copies of the NCDS5 birth history, pregnancy history, and household grid are available from the Centre for Longitudinal Studies.

In addition Peter Elias from the University of Warwick (Elias 1993) converted the data from Your Life since 1974 into a month by month matrix. The resulting dataset assigned March 1974 as month 1 (the month of the cohort member's 16th birthday) and counted each subsequent month until the month of the interview at NCDS5 (a maximum of 216 months). This enabled a researcher to identify whether individuals had experienced a particular 'event' (eg pregnancy) in any month since age 16, the length of time that this event lasted and to calculate the length of time between events (eg, length of time out of the labour market after a birth).

This project made use of the Elias dataset to analyse Your life since 1974 data.

IDENTIFYING "MOTHERS"

The birth history information in Your Life since 1974 only identifies as "mothers" those women who have had a birth, thereby excluding those "mothers" who have responsibility for children that are not their biological offspring, eg: women with adopted, fostered or step children. In addition, 11% of the 5,799 women who took part in NCDS5 gave incomplete information in the Your Life... questionnaire and therefore could not be identified as mothers from this source.

Each of the data sources (Your Life..., the pregnancy history, and the household grid) allows a slightly different definition of who is a "mother". In addition, because not all of the cohort members have completed all parts of all the questionnaires, they can also be used to supplement each other in order to build up a fuller and more consistent picture of who in the cohort has responsibility for children and who does not.

This section of the Data Note reports on initial attempts at sorting out discrepancies between these three sources of data on motherhood.

In Your Life... cohort members were instructed to include both live and still births. However, the "Employment after childbearing..." project was only interested in women who had a live birth. Cross checking with the cohort member's pregnancy histories revealed that for 29 women the first birth in their birth history was a stillbirth or a miscarriage. These 29 women were recoded, such that their next live birth was treated as their first birth. The rest of their births were re-numbered and their total number of births re-calculated. If they had no subsequent live births they were recorded as having no births (see Appendix 2, Part 1).

From the pregnancy histories we identified as "mothers" those women who gave a date of birth for a pregnancy and also indicated that the child resulting from that pregnancy was living with them in 1991 (at the time of the survey).

From the household grid, mothers were identified by calculating the age of the oldest child in the household (who did not have to be the women's own biological child). Initial work on the household grid revealed what appeared to be errors in interviewer's recording of the codes relating to household member's relationship to the cohort member. A common error was to code a cohort members own child as 12 ("Brother/Sister-In-Law") or 13 ("Own Parent") instead of 3
("Own Child"). Investigation revealed 26 women to have such errors in these variables, which were recoded to their correct values (see Appendix 2, Part 2).

Using the dataset prepared by Peter Elias (Elias, op cit.) from the original Your Life... data, 3,894 women were identified as having at least one live birth.

On the whole, most of these women (3,809) also indicated that they had a child living in their household in 1991 (household grid) and recorded a pregnancy where the resulting child was living with them in 1991 (pregnancy history).

However, 42 women appeared not to have a child living in their household in 1991, or a pregnancy where the resulting child was living with them in 1991. Investigation revealed that for 37 of these women their child was living elsewhere, and for 5 women the child had died.

Of the initial 3,894 women, 8 had missing pregnancy history and household grid information.

An additional four women recorded a pregnancy where the resulting child was living with them in 1991 (pregnancy history), but had missing household grid information.

Finally, 30 of the "mothers" identified from Your Life... indicated that they had a child living in the household (household grid) but recorded no pregnancy where the resulting child was living with them in 1991 (pregnancy history). Of these women, 13 had missing pregnancy data, 9 had not indicated whether the child resulting from the pregnancy was living with them, and 7 were "funnies" (see Appendix 2, Part 3).

From the Your Life... data, 1,277 women appeared to have had no live birth.

Most of these (1,202) also had no child living with them in 1991 (household grid) and reported no pregnancy where the resulting child was living with them (pregnancy history).

A further 20 women reported a child living in their household in 1991 (household grid) but no pregnancy where the resulting child was living with them (pregnancy history). Of these women, 28 indicated that they had adopted, fostered or step children living with them, and 2 had some missing data (see Appendix 2, Part 3 (2)).

In addition, one woman reported no children living in her household (household grid), but indicated that she had a pregnancy where the resulting child was living with her (pregnancy history).

Some 628 women had missing birth history information.

Of these women, 148 also had no children living in their household in 1991 (household grid) and reported no pregnancies where the resulting child was living with them (ie: there are no live births reported in the pregnancy history).

However, 465 indicated that they did have a child living in their household in 1991 (household grid), and reported a pregnancy where the resulting child was living with them (pregnancy history).

Finally, four women indicated that they had a child living in their household in 1991 (household grid), but indicated no pregnancy where the resulting child was living with them (pregnancy history). See Appendix 2, Part 3 (3).
BIRTH HISTORIES AND PREGNANCY HISTORIES

The information presented below arises from a comparison of birth information from two sources:

Date of first birth derived from the *birth history* included in the *Your Life...*. See below for details of the derivation.

Outcome of first pregnancy (N502014) and *Date of first birth* (N502021=month and N502023=year) taken from the *pregnancy history*.

In completing the *birth history* included in the *Your Life...* cohort members were told to include stillbirths as well as children who have died.

From the *Your Life...* dataset prepared by Peter Elias (Elias, 1993), 3,898 out of 5,799 women had a first birth by 1991, composed as follows:

<table>
<thead>
<tr>
<th>Outcome of First Pregnancy</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live births</td>
<td>3,871</td>
</tr>
<tr>
<td>Stillbirths</td>
<td>27</td>
</tr>
</tbody>
</table>

For 468 women their first birth was not their first pregnancy.

Some 31 women provided no information on the outcome of their first pregnancy, but for all but one, the date of the first birth in the *pregnancy history* matched the date of first birth in the *birth history*. These have been assumed to be live births.

A further 2 women reported that they were still in their first pregnancies and also gave invalid dates for N502021 and N502023, despite having a birth recorded in their *birth histories*.

From the *pregnancy history* data recorded in the *Cohort Member Interview*, 3,871 out of 5,799 women report a first birth as follows:

<table>
<thead>
<tr>
<th>Outcome of First Pregnancy</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live births</td>
<td>3,838</td>
</tr>
<tr>
<td>Stillbirths</td>
<td>33</td>
</tr>
</tbody>
</table>

According to the Elias *Your Life...* data, 1,273 women appear not to have a first birth and 628 had missing *birth history* information.

Investigation of *Outcome of first pregnancy* (N502014) for the 1,273 women who appear not to have had a birth shows:

<table>
<thead>
<tr>
<th>Outcome of First Pregnancy</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregnant</td>
<td>55</td>
</tr>
<tr>
<td>First pregnancy ended in stillbirth</td>
<td>1</td>
</tr>
<tr>
<td>First pregnancies ended in miscarriage</td>
<td>81</td>
</tr>
<tr>
<td>First pregnancies ended in abortion</td>
<td>107</td>
</tr>
<tr>
<td>Had missing data (and are assumed to have never had a pregnancy)</td>
<td>985</td>
</tr>
<tr>
<td>Had a live birth recorded for their first pregnancy (all but one have missing birth history data)</td>
<td>44</td>
</tr>
</tbody>
</table>

Investigation of the 628 women with missing *birth history* information shows that 429 had a birth recorded, as follows:
420 live births (4 with a missing or invalid date of birth)
5 stillbirths

The 199 with no reported birth are comprised as follows:

- 5 were pregnant
- 45 first pregnancy ended in miscarriage
- 39 first pregnancy ended in abortion
- 110 had missing data (and are assumed to have never had a pregnancy)

Combining the birth history information on date of first birth with the outcome of first pregnancy information available from the pregnancy history showed:

- 1,228 had no birth recorded in the birth history and the outcome of their first pregnancy was not a live birth (see above)
- 501 had no live births but had a birth recorded in the birth history
 Of these:
 - 314 first pregnancy had ended in miscarriage
 - 154 first pregnancy had ended in abortion (it is assumed that their first birth is not their first pregnancy)
 - 2 were still in their first pregnancy
 - 31 had no information on the outcome of their first pregnancy

Summary

Comparing information from birth history and pregnancy history for first pregnancy:

Birth History

- 3,898 live or still birth
- 1,273 no birth recorded and outcome not a birth (pregnancy history=1 stillbirth; 44 live birth; 985 never pregnant)
- 429 missing data (pregnancy history=424 live births; 5 stillbirths)
- 199 missing data (pregnancy history=110 never pregnant)
- 5,799

Pregnancy History

- 3,871 live or still birth
- 1,228 no birth recorded (966 never pregnant and birth history=no birth)
- 501 no birth (but birth history=birth)
- 199 not a birth (110 never pregnant and birth history=missing)
- 5,799
SECTION 1: DERIVED VARIABLES WHERE "MOTHERS" ARE THE CASE

NB: The derived variables that follow this section are for mothers only, and so all data are for women only.

To identify women in NCDS, the variable 'sex at birth' is recommended:
Variable = N622
Value to identify women = 2

Maximum number of women in the sample = 5,799 (present in NCDS5)

All dates are presented as months numbered from 1 to 216, where 1 represents January 1974 and 216 represents December 1991.

Variables relating to length of employment gap, time of first birth, partnership status at first birth etc, were derived from the dataset prepared by Peter Elias (Elias, 1993) from the original NCDS5 Your Life... data. Other variables were derived from the 1991 Cohort Member Interview.

Data

In total 5,799 women were interviewed in 1991. Of these, 628 did not give any good employment or birth history information and so were excluded from this dataset, leaving a total of 5,171 women, of whom 3,894 had at least one live birth.

Cohort members were told to include both live and still births in their birth histories. Cross-checking with members pregnancy histories, obtained from the Cohort Member Interview, revealed that for 29 women the first birth in their birth history was a stillbirth or a miscarriage. These 29 women were recoded, such that their next live birth was treated as their first birth. The rest of their births were re-numbered and their total number of births re-calculated. If they had no subsequent live births, they were recoded as having no births (see Appendix 1).
AGEYCH Age of youngest child in the household in 1991.

Calculated from the household grid on p53 of the Cohort Member Interview

Variables used:
n502620 n502626 n502632 n502638 n502644 n502650 n502656 n502662 n502668 n502618
n502624 n502630 n502636 n502642 n502648 n502654 n502660
MAGE1SUP (derived)
PARTEVER (derived)

NOTE

The following case needs to be corrected for this variable:

 do if serial eq '511123T'
 compute ageych=99
 end if

Frequency

AGEYCH age of youngest child in household

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 yrs or under</td>
<td>1.00</td>
<td>1454</td>
<td>25.1</td>
<td>25.1</td>
<td>25.1</td>
</tr>
<tr>
<td>3-4 yrs</td>
<td>2.00</td>
<td>880</td>
<td>15.2</td>
<td>15.2</td>
<td>40.2</td>
</tr>
<tr>
<td>5-10 yrs</td>
<td>3.00</td>
<td>1733</td>
<td>29.9</td>
<td>29.9</td>
<td>70.1</td>
</tr>
<tr>
<td>11-15 yrs</td>
<td>4.00</td>
<td>312</td>
<td>5.4</td>
<td>5.4</td>
<td>75.5</td>
</tr>
<tr>
<td>16 yrs or over</td>
<td>5.00</td>
<td>16</td>
<td>.3</td>
<td>.3</td>
<td>75.8</td>
</tr>
<tr>
<td>age not known</td>
<td>97.00</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>75.8</td>
</tr>
<tr>
<td>child absent</td>
<td>98.00</td>
<td>51</td>
<td>.9</td>
<td>.9</td>
<td>76.7</td>
</tr>
<tr>
<td>no live bths</td>
<td>99.00</td>
<td>1164</td>
<td>20.1</td>
<td>20.1</td>
<td>96.8</td>
</tr>
<tr>
<td>missing</td>
<td>999.00</td>
<td>186</td>
<td>3.2</td>
<td>3.2</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Total | 5799 | 100.0 | 100.0 | | |

Valid cases 5799 Missing cases 0

SPSS code

**
* Cleaning up the household grid. Acknowledgements to Kate Smith
**

 do if serial='045006S'
 . compute n502626=3
 . compute n502632=3
 . compute n502638=3
 end if

 do if serial='048019T'
 . compute n502620=3
 end if

 do if serial='088026R'
 . compute n502626=3
 . compute n502632=3
 . compute n502638=3
 end if

 do if serial='120135W'
 . compute n502626=3
 end if

 do if serial='147002B'
 . compute n502626=3
 end if
compute n502632=3
compute n502638=3
compute n502644=3
end if
do if serial='186122J'
. compute n502620=1
. compute n502626=3
. compute n502632=3
end if
do if serial='421062Y'
. compute n502620=1
. compute n502626=3
. compute n502632=3
. compute n5026638=3
end if
do if serial='500395S'
. compute n502620=1
. compute n502626=3
end if
do if serial='510037V'
. compute n502620=2
. compute n502626=3
end if
do if serial='510085H'
. compute n502626=3
end if
do if serial='511122R'
. compute n502626=3
end if
do if serial='516004M'
. compute n502620=1
. compute n502626=3
end if
do if serial='528044S'
. compute n502620=1
. compute n502626=3
end if
do if serial='52901SQ'
. compute n502620=1
. compute n502626=3
end if
do if serial='550253C'
. compute n502620=3
end if
do if serial='62011OS'
. compute n502620=1
. compute n502626=3
end if
do if serial='62016OJ'
. compute n502620=1
. compute n502626=3
. compute n502632=3
. compute n502638=3
. compute n502644=3
end if
do if serial='720002W'
. compute n502620=1
. compute n502626=3
end if
do if serial='750109L'
compute n502620=1
compute n502626=3
end if
do if serial='840012V'
compute n502626=3
compute n502632=3
compute n502638=3
end if
do if serial='986013P'
compute n502620=3
end if
do if serial='986383Z'
compute n502626=3
end if
do if serial='986448B'
compute n502620=1
compute n502626=3
compute n502632=3
compute n502638=3
end if
do if serial='X80153P'
compute n502632=3
end if
do if serial='YOO316X'
compute n502626=3
end if
do if serial='Y30013X'
compute n502626=3
compute n502632=3
end if

**
* calculate age of youngest child in the household from household grid in CMI
**

compute ageychc=999
do repeat x=n502620 n502626 n502632 n502638 n502644 n502650 n502656 n502662
 y=n502618 n502624 n502630 n502636 n502642 n502648 n502654 n502660
 n502666
 . if (((x eq 3) or (x eq 4) or (x eq 5) or (x eq 6)) and (y lt ageychc))
 ageychc=y
 end repeat
 if (ageych eq 999) and neverp eq 1) ageych=99
 * compute ageychc=ageych
 recode ageych (lo thru 2=1) (3,4=2) (5 thru 10=3) (11 thru 15=4)
 (16 thru 998=5)
 *missing values ageych (999)
 if (ageych eq 999 and mageisup eq 9) ageych=99
 if (ageych eq 999 and mageisup eq 6) ageych=98
 if (ageych eq 999 and magelsup lt 6) ageych=97
 if (ageychc eq 999 and magelsup eq 9) ageychc=99
 if (ageychc eq 999 and mageisup eq 6) ageychc=98
 if (ageychc eq 999 and magelsup lt 6) ageychc=97
 var labs ageych 'age of youngest child in household'
 val labs ageych 1 12 yrs or under' 2 13-4 yrs' 3 '5-10 yrs' 4 '11-15 yrs'
 5 '16 yrs or over' 97 'age not known' 98 'child absent'
 99 'no live bths' 999 'missing'
BTHSGAP Number of births in gap

Derived from the *Your Life...* Elias dataset. Simply a count of the number of births, subsequent to her first, born to a woman before she reports first entry into paid employment (see table below and see code in: Appendix 1 pp5-6).

Frequency

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>no return</td>
<td>.00</td>
<td>1184</td>
<td>22.9</td>
<td>40.3</td>
<td>40.3</td>
</tr>
<tr>
<td>no bths in gap</td>
<td>1.00</td>
<td>1370</td>
<td>26.5</td>
<td>46.6</td>
<td>86.8</td>
</tr>
<tr>
<td>1 bth in gap</td>
<td>2.00</td>
<td>179</td>
<td>3.5</td>
<td>6.1</td>
<td>92.9</td>
</tr>
<tr>
<td>2+ bths in gap</td>
<td>3.00</td>
<td>208</td>
<td>4.0</td>
<td>7.1</td>
<td>100.0</td>
</tr>
<tr>
<td>1 bth only</td>
<td>8.00</td>
<td>953</td>
<td>18.4</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td>no births</td>
<td>9.00</td>
<td>1277</td>
<td>24.7</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>------</td>
<td>5171</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 2941 Missing cases 2230

SPSS code (see Appendix 1, pp5-6)
EXPART No partner in 1991 but partner in the past

Derived from cohort member interview.

Variables used:

MAR91 (derived)
PARTEVER (derived)

Frequency

<table>
<thead>
<tr>
<th>EXPART</th>
<th>Freq</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5314</td>
<td>91.2</td>
</tr>
<tr>
<td>1</td>
<td>485</td>
<td>8.4</td>
</tr>
<tr>
<td>99</td>
<td>25</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td>5799</td>
<td>100.0</td>
</tr>
</tbody>
</table>

SPSS code:

```spss
compute expart=0
if (mar91 eq 4 and partever eq 3) expert=1
if mis(mar91) expart=99
missing values expart (99)
```
FPMTHPRE Employment status six months prior to first birth

Derived from *Your Life since 1974* (Elias dataset).

Variables used:
- TOTBTH (derived)
- NBIRTHI (derived)
- whether in full-time employment variables from Elias ACCNCDS dataset
- whether in part-time employment variables from Elias ACCNCDS dataset

Frequency:

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No job</td>
<td>.00</td>
<td>907</td>
<td>15.6</td>
<td>23.3</td>
<td>23.3</td>
</tr>
<tr>
<td>FT</td>
<td>1.00</td>
<td>2733</td>
<td>47.1</td>
<td>70.2</td>
<td>93.5</td>
</tr>
<tr>
<td>PT</td>
<td>2.00</td>
<td>254</td>
<td>4.4</td>
<td>6.5</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>99.00</td>
<td>628</td>
<td>10.8</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1277</td>
<td>22.0</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5799</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Valid cases: 3894 Missing cases: 1905

SPSS code

```spss
* define vectors
vector ftemp=ft1 to ft216
vector ptemp=pt1 to pt216
vector allemp=emp1 to emp216

* declare missing values
loop #i=l to 216
  .  if (allemp(#i) eq 9 and ftemp(#i) eq 0) ftemp(#i)=9
  .  if (allemp(#i) eq 9 and ptemp(#i) eq 0) ptemp(#i)=9
  .  if (allemp(#i) eq 1 and ftemp(#i) eq 0 and ptemp(#i) eq 0) ftemp(#i)=9
  .  if (allemp(#i) eq 1 and ftemp(#i) eq 0 and ptemp(#i) eq 0) ptemp(#i)=9
end loop
missing values emp1 to emp216 (8,9)

* compute whether employment information is missing
compute empmiss=sum(emp1 to emp216)
* drop women with missing employment information (n=608)
select if ~missing(empmiss)

* compute employment status six months prior to the first birth
compute sixmprev=0
compute fpmthpre=0
it (totbth eq 0) sixmprev=99
if (totbth eq 0) fpmthpre=99
missing values sixmprev (99)/fpmthpre (99)
do if totbth ge 1
  .  compute sixmth=(nbirthi-6)/fpmthpre (99)
  .  loop #i=l to intview
```
. if (sixmth eq #i and allemp(#i) eq 1) sixmprev=1
. if (sixmth eq #i and ftemp(#i) eq 1 and ptemp(#i) eq 1) fpmthpre=1
. if (sixmth eq #i and ftemp(#i) eq 1 and ptemp(#i) eq 0) fpmthpre=1
. if (sixmth eq #i and ftemp(#i) eq 0 and ptemp(#i) eq 1) fpmthpre=2
. end loop
end if
var labels fpmthpre 'Whether FT/PT job 6 mths before first birth'
val labels fpmthpre 1 'FT' 2 'PT' 0 'No job' 9 'No birth'
var labels sixmprev 'Whether in a job 6 mths before first birth'
val labels sixinprev 0 'Not in emp' 1 'In emp'
HIQUAL Mother's highest educational qualification

A six category variable ("none"; "some"; "0 level"; "A level"; "higher"; "degree"), derived from
the 1991 Cohort Member Interview (using code devised by Professor John Bynner). Variables
N501441 to N501469. Cohort members were asked to give all the qualifications they have ever
obtained. Some 97 mothers could not be classified because they had missing information

Source variables:
n501441 to n501569
n501513 to n501541

Frequency

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>1.00</td>
<td>645</td>
<td>12.5</td>
<td>12.7</td>
<td>12.7</td>
</tr>
<tr>
<td>some quals</td>
<td>2.00</td>
<td>960</td>
<td>18.6</td>
<td>18.9</td>
<td>31.6</td>
</tr>
<tr>
<td>O level or equiv</td>
<td>3.00</td>
<td>1755</td>
<td>33.9</td>
<td>34.6</td>
<td>66.2</td>
</tr>
<tr>
<td>A level or equiv</td>
<td>4.00</td>
<td>394</td>
<td>7.6</td>
<td>7.8</td>
<td>74.0</td>
</tr>
<tr>
<td>other higher</td>
<td>5.00</td>
<td>728</td>
<td>14.1</td>
<td>14.3</td>
<td>88.3</td>
</tr>
<tr>
<td>degree</td>
<td>6.00</td>
<td>592</td>
<td>11.4</td>
<td>11.7</td>
<td>100.0</td>
</tr>
<tr>
<td>.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5171</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 5074 Missing cases 97

SPSS code

* John Bynner's code for highest ed qualification

* cleaning: if 'no quals ever' but not 'no quals before 1981',
* use 'no quals before 1981'
* do repeat x=n501441 to n501469/* quals ever
 /y=n501513 to n501541/*quals before 1981
 if (x=37 and range(y,1,36)) x=y
 if ((x=37 and missing(y)) or y=0) y=37
end repeat
*
* compute qualification variable
* compute hiqual=0
 do repeat x=n501441 to n501469
 if any(x,37) hiqual=1
 if any(x,10,25,1) hiqual=2
 if any(x,20,19,18,17,13,12,11,7,6,4,3,2) hiqual=3
 if any(x,23,21,15,14,9,8,5) hiqual=4
 if any(x,30,29,28,27,26,24,22,16) hiqual=5
 if any(x,31,32,33) hiqual=6
 end repeat
var labels hiqual 'highest ed qual'
val labels hiqual 1 'none' 2 'some quals' 3 '0 level or equiv'
 4 'A level or equiv' 5 'other higher' 6 'degree'
missing values hiqual (0)

INTEND Intention to have any/more children

Derived from the cohort member interview.

Source variables:

TOTBTH (derived)
EMPMISS (derived)
n502550 n502551 n502552 n502553

Frequency:

<table>
<thead>
<tr>
<th>Value</th>
<th>Value Label</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>yes</td>
<td>936</td>
<td>16.1</td>
<td>18.5</td>
<td>18.5</td>
</tr>
<tr>
<td>2.00</td>
<td>no</td>
<td>1869</td>
<td>32.2</td>
<td>36.9</td>
<td>55.4</td>
</tr>
<tr>
<td>3.00</td>
<td>don't know</td>
<td>886</td>
<td>15.3</td>
<td>17.5</td>
<td>72.9</td>
</tr>
<tr>
<td>4.00</td>
<td>can't</td>
<td>1375</td>
<td>23.7</td>
<td>27.1</td>
<td>100.0</td>
</tr>
<tr>
<td>.</td>
<td></td>
<td>628</td>
<td>10.8</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td>.00</td>
<td></td>
<td>105</td>
<td>1.8</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5799</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 5066 Missing cases 733

SPSS code

select if -missing(empmiss).
recode totbth (2 thru hi=2).
compute intend=0.
recode n502553 (8=18).
*if (n502553 eq 1) intend=1.
if (n502553 eq 2) intend=2.
if (n502553 eq 18) intend=3.
if ((n502550 eq 1) or (n502550 eq 2) or (n502550 eq 3)
or (n502551 eq 1) or (n502551 eq 2) or (n502551 eq 3)
or (n502552 eq 1) or (n502552 eq 2) or (n502552 eq 3))
intend=4.
if (n502553 eq 1) intend=1.
freq intend.
INTERVAL Employment gap

Derived from the *Your Life...* dataset prepared by Peter Elias. A woman's employment gap was calculated by counting the number of months between her first birth and her first entry to employment after that birth.

Counting started at the month of her first birth and continued until the last month before she entered employment. If a woman was in employment in the same month as her first birth the count was zero. For women who had a first birth but had not subsequently entered employment by the time of interview (censored cases), their employment gap was counted from their first birth to the month before they were interviewed.

The survival analysis procedure also requires the calculation of a flag variable (RETURN), to indicate whether a case has made the transition being investigated or not (e.g., whether a woman had made an entry to a job after her first birth or not (a censored case)). This flag has a value of 1=entry, or 0=no entry (Appendix 1, p 5).

Source variables:
- TOTBTH (derived)
- RETURN (derived)
- MTHRET (derived)
- NBIRTH1 (derived)

SPSS code (See Appendix 1, p5)
LEFT Whether left employment before interview having returned to work post childbirth

Source variables:
INTVIEW (derived)
STAY (derived)
TOTBTH (derived)
RETURN (derived)

Frequency

<table>
<thead>
<tr>
<th>LEFT</th>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.00</td>
<td>1521</td>
<td>29.4</td>
<td>48.5</td>
<td>48.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1612</td>
<td>31.2</td>
<td>51.5</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>no return</td>
<td>8.00</td>
<td>761</td>
<td>14.7</td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no bths</td>
<td>9.00</td>
<td>1277</td>
<td>24.7</td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5171</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 3133 Missing cases 2038

SPSS code: (see Appendix 1, p6)
LEFTED Month of first leaving full-time education

Derived from *Your Life since 1974.*

Variables used:

job history variables derived by Pierella Paci (job 1 to job216)
INTVIEW (derived)

Frequency

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEFTED</td>
<td>191.25</td>
<td>20.94</td>
<td>7</td>
<td>130</td>
<td>5583</td>
</tr>
</tbody>
</table>

SPSS code

* define vectors
vector jbhst=job1 to job216
* declare missing values
* missing values job1 to job216 (-1)
* compute whether employment information is missing
count empmiss=job1 to job216 (mis)
select if empmiss lt intview
* compute proportion of time in a job leaving school to interview
* compute date first leaving FT education
* missing values job1 to job216 ()
compute lefted=0
loop #i=7 to intview if (lefted=0)
 . if (jbhst(#i) ne 2) lefted=#i
end loop
* NB: Case number 050032X has had her first 8 job months recoded.
 * She originally had them as missing and her next 10 month were in
 * full-time ed. So I have recoded job1 to job8 as ft ed too.
* execute
* if (lefted eq 0) lefted=7
LONEMOTH Ever been a lone mother

Uses marital status at first birth and 1991 along with question n502377 which asks whether the cohort member has ever had a spell of lone parenthood, to drive whether a cohort member has ever had a period of lone parenthood.

Variables used:

n502377
MARITALI (derived) MARSTAT (derived) AGEYCH (derived) MAGE1SUPP (derived)

Freq:

LONEMOTH ever been lone mother

<table>
<thead>
<tr>
<th>Value</th>
<th>Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>first bth & 1991</td>
<td>1.00</td>
<td>108</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>2.00</td>
<td>first bth not 1991</td>
<td>2.00</td>
<td>147</td>
<td>2.5</td>
<td>2.5</td>
<td>4.4</td>
</tr>
<tr>
<td>3.00</td>
<td>1991 not first bth</td>
<td>3.00</td>
<td>353</td>
<td>6.1</td>
<td>6.1</td>
<td>10.5</td>
</tr>
<tr>
<td>4.00</td>
<td>ever lone moth</td>
<td>4.00</td>
<td>465</td>
<td>8.0</td>
<td>8.0</td>
<td>18.5</td>
</tr>
<tr>
<td>5.00</td>
<td>never lone moth</td>
<td>5.00</td>
<td>3295</td>
<td>56.8</td>
<td>56.8</td>
<td>75.3</td>
</tr>
<tr>
<td>9.00</td>
<td>lone moth dk</td>
<td>9.00</td>
<td>81</td>
<td>1.4</td>
<td>1.4</td>
<td>76.7</td>
</tr>
<tr>
<td>99.00</td>
<td>no live bths</td>
<td>99.00</td>
<td>1350</td>
<td>23.3</td>
<td>23.3</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Total 5799 100.0 100.0

Valid cases 5700 Missing cases 0

SPSS code

compute if women has ever been a lone mother

compute lonemoth=0.
if (n502377 eq 1) lonemoth=4.
if (sysmis(n502377) or n502377 eq 9) lonemoth=9.
if ((maritall eq 0) and (marstat eq 3 and any(ageych,1,2,3,4,5,97))) lonemoth=1.
if (maritall eq 0 and lonemoth ne 1) lonemoth=2.
if (marstat eq 3 and any(ageych,1,2,3,4,5,97) and lonemoth ne 1 and lonemoth ne 2) lonemoth=3.
if (n502377 eq 2) lonemoth=5.
if (mage1sup eq 9) lonemoth=99.
var labels lonemoth 'ever been lone mother'.
val labels lonemoth 1 'first bth & 1991' 2 'first bth not 1991'
 3 '1991 not first bth' 4 'ever lone moth' 5 'never lone moth'
 9 'lone moth dk' 99 no live bths'.
recode lonemoth (0=9).
MAGEBTH1 Mother's age at First birth (live births)

Calculated from *Your Life since 1974* supplemented by information from the cohort members pregnancy history (page 44 of the *Cohort Member Interview*).
Applies for women who have valid Yor Life information.

Variables used:

NBIRTHI (derived).
TOTBTH (derived)

Frequency

MAGEBTH1 mothers age at first birth

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>lt 20 yrs</td>
<td>1.00</td>
<td>550</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
</tr>
<tr>
<td>20-24 yrs</td>
<td>2.00</td>
<td>1443</td>
<td>25.8</td>
<td>25.8</td>
<td>35.7</td>
</tr>
<tr>
<td>25-29 yrs</td>
<td>3.00</td>
<td>1355</td>
<td>24.3</td>
<td>24.3</td>
<td>60.0</td>
</tr>
<tr>
<td>30+ yrs</td>
<td>4.00</td>
<td>501</td>
<td>9.0</td>
<td>9.0</td>
<td>68.9</td>
</tr>
<tr>
<td>no birth</td>
<td>99.00</td>
<td>1209</td>
<td>21.7</td>
<td>21.7</td>
<td>90.6</td>
</tr>
<tr>
<td>missing</td>
<td>999.00</td>
<td>525</td>
<td>9.4</td>
<td>9.4</td>
<td>100.0</td>
</tr>
</tbody>
</table>

------- ------- -------
Total 5583 100.0 100.0

Valid cases 5583 Missing cases 0

SPSS code

NOTE

The following cases need to be corrected for this variable:

```spss
do if serial eq '215001B'
   compute magebth1=3
end if

do if serial eq'511123T'
   compute magebth1=9
end if

do if serial eq'513085Y'
   compute magebth1=3
end if

do if serial eq '517152J'
   compute magebth1=3
end if

do if serial eq '620113Y'
   compute magebth1=1
end if

do if serial eq'960003Q'
   compute magebth1=3
end if

do if serial eq'X32002U'
   compute magebth1=3
end if

* 
```
define vectors

vector jbhst=job1 to job216

declare missing values

missing values job1 to job216 (-1)

compute whether employment information is missing

count empmiss=job1 to job216 (mis)

compute age of mother at first birth

compute magebthl=0
if (totbth eq 0) magebthl=99
if mis(totbth) magebthl=999
do if totbth ge 1
 . if (nbirthl ge 1 and nbirthl le 50) magebthl=1
 . if (nbirthl gt 50 and nbirthl le 110) magebthl=2
 . if (nbirthl ge 111 and nbirthl le 170) magebthl=3
 . if (nbirthl ge 171 and nbirthl le intview) magebthl=4
end if

*missing values magebthl (99,999)

var labels magebthl 'mothers age at first birth'
val labels magebthl 1 'lt 20 yrs' 2 '20-24 yrs' 3 '25-29 yrs' 4 '30+ yrs'
 99 'no birth' 999 missing,
MAGE1SUP Mother's age at first birth (live births)

Uses mother's age at first birth calculated from Your Life... (Peter Elias data) supplemented by extra information from the household grid and from the cohort members pregnancy history (page 244 of the Cohort Member Interview).

Variables used:

MAGEBTHI (derived)

<table>
<thead>
<tr>
<th>Value</th>
<th>Valid Value Label</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td><20yrs</td>
<td>654</td>
<td>11.3</td>
<td>11.3</td>
<td>11.3</td>
</tr>
<tr>
<td>2.00</td>
<td>20-24yrs</td>
<td>1661</td>
<td>28.6</td>
<td>28.6</td>
<td>39.9</td>
</tr>
<tr>
<td>3.00</td>
<td>25-29yrs</td>
<td>1495</td>
<td>25.8</td>
<td>25.8</td>
<td>65.7</td>
</tr>
<tr>
<td>4.00</td>
<td>30+yrs</td>
<td>546</td>
<td>9.4</td>
<td>9.4</td>
<td>75.1</td>
</tr>
<tr>
<td>5.00</td>
<td>date unknown</td>
<td>42</td>
<td>.7</td>
<td>.7</td>
<td>75.8</td>
</tr>
<tr>
<td>6.00</td>
<td>chld absent</td>
<td>51</td>
<td>.9</td>
<td>.9</td>
<td>76.7</td>
</tr>
<tr>
<td>9.00</td>
<td>no live bths</td>
<td>1164</td>
<td>20.1</td>
<td>20.1</td>
<td>96.8</td>
</tr>
<tr>
<td>99.00</td>
<td>missing</td>
<td>186</td>
<td>3.2</td>
<td>3.2</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 5799 Missing cases 0

NOTE

The following cases need to be corrected for this variable

```
do if serial eq '21500IB'
    compute mage1sup=3
  end if

do if serial eq '511123T'
    compute magelsup=9
  end if

do if serial eq '513085Y'
    compute magelsup=3
  end if

do if serial eq '517152J'.
    compute magelsup=3
  end if

do if serial eq '620113Y'.
    compute magelsup=1
  end if

do if serial eq '960003Q'
    compute magelsup=3
  end if

do if serial eq 'X32002U'
    compute magelsup=3
  end if
```

MAGE1SUP No SPSS code in draft
MARITAL1 Partnership status at time of first birth

Derived from the partnership histories in the Elias Your Life... dataset. A three-fold classification ("living without a partner"; "Married and living with partner"; and "cohabiting with partner"). Cohort members were classified according to whichever partnership status they indicated in the same month as their first birth (see table below and code in: Appendix 1, p7).

Source variables:
TOTBTH (derived)
NBIRTH1 (derived)
MARRIED (derived)
LIVING (derived)

Frequency

<table>
<thead>
<tr>
<th>MARITAL1 partnership status at first bth</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>living alone</td>
<td>.00</td>
<td>326</td>
<td>6.3</td>
<td>8.4</td>
<td>8.4</td>
</tr>
<tr>
<td>married</td>
<td>1.00</td>
<td>3254</td>
<td>62.9</td>
<td>83.6</td>
<td>91.9</td>
</tr>
<tr>
<td>cohabiting</td>
<td>2.00</td>
<td>314</td>
<td>6.1</td>
<td>8.1</td>
<td>100.0</td>
</tr>
<tr>
<td>no bths</td>
<td>9.00</td>
<td>1277</td>
<td>24.7</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5171</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 3894 Missing cases 1277

SPSS code(see Appendix 1, p7)
MTHRET Month first entered employment after first birth

Derived from *Your Life since 1974* (Elias dataset)

Variables used:

whether in any employment variables from Elias ACCNCDS dataset (emp1-emp216)
TOTBTH (derived)
INTVIEW (derived)
NBIRTHI (derived)

Frequency

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTHRET</td>
<td>108.69</td>
<td>68.14</td>
<td>0</td>
<td>214</td>
<td>3894</td>
</tr>
</tbody>
</table>

Missing values: 999

Also: mthreta if (methret=0) methreta=intview

SPSS code

```spss
* define vectors
vector allemp=emp1 to emp216
missing values ed1 to mar216 (8,9)
* compute whether employment information is missing
compute empmiss=sum(emp1 to emp216)
* drop women missing employment information
select if ~missing(empmiss)
*
* compute interval between first birth and first return to employment
compute methret=0 /*month returned to employment
if (totbth eq 0) mrthret=999
missing values methret (999)
val labels methret 999 'no births'
do if (~missing(methret))
  loop #1=nbirth1 to intview if (methret=0)
    . if (allemp(#1) eq 1) methret=#1
end loop
*
```
PARTEVER Partner 91/ever had a partner

Partnership status. Derived from *Your Life since 1974* and *Cohort Member Interview*

Variables used:

n5065 13
n506514
FPARTCON (derived) MAR91 (derived)

Frequency

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>partner first</td>
<td>1.00</td>
<td>3673</td>
<td>63.3</td>
<td>63.6</td>
<td>63.6</td>
</tr>
<tr>
<td>partner not first</td>
<td>2.00</td>
<td>1036</td>
<td>17.9</td>
<td>17.9</td>
<td>81.5</td>
</tr>
<tr>
<td>no part but past</td>
<td>3.00</td>
<td>694</td>
<td>12.0</td>
<td>12.0</td>
<td>93.5</td>
</tr>
<tr>
<td>no part no past</td>
<td>4.00</td>
<td>373</td>
<td>6.4</td>
<td>6.5</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>.4</td>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>Total</td>
<td>5799</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 5776 Missing cases 23

SPSS code

* Cleaning whether still with partner variables from Your Life'. Thanks to Pam and Kath Kiernan
* do if serial eq '385048J'.
 . compute fpartcon=2.
end if.
* do if serial eq '481007D'.
 . compute fpartcon=2.
end if.
* do if serial eq '528010Y'.
 . compute fpartcon=2.
end if.
* do if serial eq '986224C'.
 . compute fpartcon=2.
end if.
* do if serial eq 'X87073D'.
 . compute fpartcon=2.
end if.
* do if serial eq '093126Z'.
 . compute part3con=2.
1 end if.
* do if serial eq '740031S'.
 . compute part3con=2.
end if.
*
do if serial eq '950043W'.
 . compute part2con=9.
 . missing values part2con (9).
end if.
*
***986004N is messy. According to her relationship section this woman was
 cohabiting and never m, but her household grid says that she lived
 alone,
 she didn't complete Your Life. So really we don't know what she's doing.
 Set her to missing on fpartcon (KK had used her realtionship to set
 fpartcon to 1. Also recode marstpar to missing (kate has it as single
 and
 never married. Although that's what she probably is we can't be sure.

do if serial eq '986004N'.
 . compute fpartcon=9.
 . missing values fpartcon (9).
end if.
*
 if (fpartcon eq 1) partever=1.
 if ((mar91 eq 1 or mar91 eq 2) and Epartcon ne 1) partever=2.
 if (mar91 eq 3 or mar91 eq 4) partever=3.
 if (n506513 eq 2 and n506514 eq 2) partever=4.
 var lables partever 'Partner 91/ever had partner'.
 val labels partever 1 'partner first' 2 'partner not first'
 3 'no part but past' 4 'no part no past'.

PARTSTAT Partner's economic status in 1991

Indicates whether a cohort member's partner is unemployed and/or receiving income support

Variables used:

PEMPSTAT aka n501048
DSPMTB partner receiving income support or not (derived by Clare Ward/Hugh Davies)

Frequency

<table>
<thead>
<tr>
<th>Value Labels</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other/no part</td>
<td>.00</td>
<td>5522</td>
<td>95.2</td>
<td>95.2</td>
<td>95.2</td>
</tr>
<tr>
<td>Unemployed/not on in</td>
<td>1.00</td>
<td>184</td>
<td>3.2</td>
<td>3.2</td>
<td>98.4</td>
</tr>
<tr>
<td>On income support</td>
<td>2.00</td>
<td>93</td>
<td>1.6</td>
<td>1.6</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Total 5799 Valid cases 5799 Missing cases 0

SPSS code

```plaintext
* compute partners economic status
*---------------------------------------------------------------------
compute parstat=0
if (pempstat eq 5 and dspmtb ne 1) partstat=1
if (dspmtb eq 1) partstat=2
*if (pempstat ge 1 and pempstat le 4) partstat=3
*if (pempstat ge 6 andpempstat le 10) partstat=4
*if (sysmis(pempstat)) partstat=5
*missing values partstat (9)
var labels partstat Partners economic status in 1991
val labels partstat 1 'Unemployed/not on income support'
                   2 'On income support' 0 'Other/no part'
```
PREGJOB In a job during first pregnancy

Employment during pregnancy first live birth as identified by Your Life since 1974.

Variables used:

NBIRTHI TOTBTH
whether in any employment: variables from Elias ACCNCDS dataset (emp 1 to emp216)

Frequency

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>.00</td>
<td>716</td>
<td>12.3</td>
<td>18.4</td>
<td>18.4</td>
</tr>
<tr>
<td>Yes</td>
<td>1.00</td>
<td>3178</td>
<td>54.8</td>
<td>81.6</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>628</td>
<td>10.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No birth</td>
<td>9.00</td>
<td>1277</td>
<td>22.0</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5799</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 3894 Missing cases 1905

SPSS code

* define vectors
vector allemp=emp1 to emp216
missing values ed1 to emp216 (8,9)

* compute whether employment information is missing
compute empmiss=sum(empl to emp216)
drop women with missing employment information (n=608)
select if ~ missing(empmiss)

* compute whether woman was in a job during her first pregnancy
compute pregst=99
compute pregst=nbirth1-8
if(pregst lt 1) pregst=1
if (totbth eq 0) pregjob=9
do if (totbth ge 1)
 compute pregjob=0
 loop #i=pregst to nbirth1 if (pregjob=0)
 if (allemp(#i) eq 1) pregjob=1
end loop
end if
missing values pregst (99) /pregjob (9)
var labels pregjob 'Whether in emp during pregnancy'
val labels pregjob 1 'Yes' 0 'No' 9 'No birth'
PROPRET Proportion of time in employment since first return

Derived from the Elias *Your Life...* dataset. Calculated by totalling the number of months a woman indicated that she spent in employment (full or part time), since making her first entry to employment after her first birth, which was divided by the number of months between a woman's first return and the month of her 1991 interview (see table below and Appendix 1, p7).

Source variables:
TOTBTH (derived)
ALLEMP (derived)

Frequency

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td><10%</td>
<td>1.00</td>
<td>1818</td>
<td>35.2</td>
<td>46.7</td>
<td>46.7</td>
</tr>
<tr>
<td>10–19%</td>
<td>2.00</td>
<td>152</td>
<td>2.9</td>
<td>3.9</td>
<td>50.6</td>
</tr>
<tr>
<td>20–29%</td>
<td>3.00</td>
<td>168</td>
<td>3.2</td>
<td>4.3</td>
<td>54.9</td>
</tr>
<tr>
<td>30–39%</td>
<td>4.00</td>
<td>169</td>
<td>3.3</td>
<td>4.3</td>
<td>59.2</td>
</tr>
<tr>
<td>40–49%</td>
<td>5.00</td>
<td>174</td>
<td>3.4</td>
<td>4.5</td>
<td>63.7</td>
</tr>
<tr>
<td>50–59%</td>
<td>6.00</td>
<td>186</td>
<td>3.6</td>
<td>4.8</td>
<td>68.5</td>
</tr>
<tr>
<td>60–69%</td>
<td>7.00</td>
<td>145</td>
<td>2.8</td>
<td>3.7</td>
<td>72.2</td>
</tr>
<tr>
<td>70–79%</td>
<td>8.00</td>
<td>152</td>
<td>2.9</td>
<td>3.9</td>
<td>76.1</td>
</tr>
<tr>
<td>80–89%</td>
<td>9.00</td>
<td>183</td>
<td>3.5</td>
<td>4.7</td>
<td>80.8</td>
</tr>
<tr>
<td>90–100%</td>
<td>10.00</td>
<td>747</td>
<td>14.4</td>
<td>19.2</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>999.00</td>
<td>1277</td>
<td>24.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5171</td>
<td></td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 3894 Missing cases 1277

SPSS code (see Appendix1, p7)
PTIMEMP Proportion of time in employment between first leaving full-time education and interview

Derived from Your Life at 33.

Variables used:

LEFTED (derived)
TIMEMP (derived)
job history variables derived by Pierella Paci job1 to job216
INTVIEW
MIS1

Frequency

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>1.00</td>
<td>108</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>10-19%</td>
<td>2.00</td>
<td>119</td>
<td>2.1</td>
<td>2.1</td>
<td>4.1</td>
</tr>
<tr>
<td>20-29%</td>
<td>3.00</td>
<td>157</td>
<td>2.8</td>
<td>2.8</td>
<td>6.9</td>
</tr>
<tr>
<td>30-39%</td>
<td>4.00</td>
<td>260</td>
<td>4.7</td>
<td>4.7</td>
<td>11.5</td>
</tr>
<tr>
<td>40-49%</td>
<td>5.00</td>
<td>292</td>
<td>5.2</td>
<td>5.2</td>
<td>16.8</td>
</tr>
<tr>
<td>50-59%</td>
<td>6.00</td>
<td>424</td>
<td>7.6</td>
<td>7.6</td>
<td>24.4</td>
</tr>
<tr>
<td>60-69%</td>
<td>7.00</td>
<td>507</td>
<td>9.1</td>
<td>9.1</td>
<td>33.4</td>
</tr>
<tr>
<td>70-79%</td>
<td>8.00</td>
<td>569</td>
<td>10.2</td>
<td>10.2</td>
<td>43.6</td>
</tr>
<tr>
<td>80-89%</td>
<td>9.00</td>
<td>550</td>
<td>9.9</td>
<td>9.9</td>
<td>53.5</td>
</tr>
<tr>
<td>90-100%</td>
<td>10.00</td>
<td>2594</td>
<td>46.5</td>
<td>46.5</td>
<td>99.9</td>
</tr>
<tr>
<td>999.00</td>
<td>3</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 5583 Missing cases 0

SPSS code

*
vector jbhst=job1 to job216
* declare missing values
missing values job1 to job216 (-1)
* compute whether employment information is missing
* count empmiss=job1 to job216 (mis)
* select if empmiss lt intview
*
* compute proportion of time in a job leaving school to interview
* compute date first leaving FT education

missing values job1 to job216 ()
compute lefted=0
loop #i=7 to intview if (lefted=0)
. if (jbhst(#i) ne 2) lefted=#i
end loop
*
* NB: Case number 050032X has had her first 8 job months recoded.
* She originally had them as missing and her next 10 month were in
* full-time ed. So I have recoded job1 to job8 as ft ed too.
*
execute
*
if (lefted eq 0) lefted=7
*
* read data again
*
vector jbhst=job1 to job216
missing values job1 to job216 (-1)
count empmiss=job1 to job216 (mis)
select if empmiss 1t intview
*
* compute number months in employment between leaving school and interview
*
compute timemp=0
loop #i=lefted to intview
 . if (jbhst(#i) eq 1 or jbhst(#i) eq 3 or jbhst(#i) eq 4) timemp=timemp+1
end loop
*
* compute number month with missing job information between leaving
* education and interview compute misl=0
compute misl=0
loop #i=lefted to intview
 . if (mis (jobhist(#i)))) misl=misl+1
end loop
compute pmisl=misl/(intview-lefted)*100 /* proportion months with missing
 job info between left ed
 intview
*
recode pmisl (lo thru 9.99=1) (10.0 thru 19.99=2) (20.00 thru 29.99=3)
 (30.00 thru 39.99=4) (40.00 thru 49.99=5) (50.00 thru 59.99=6)
 (60.00 thru 69.99=7) (70.00 thru 79.00=8) (80.00 thru 89.99=9)
 (90.00 thru hi=10)
var labels pmisl 'Prop mth miss job info lefted ->intview'
val labels pmisl 1 '<10%' 2 '1-19%' 3 '20-29%' 4 '30-39%' 5 '40-49%'
6 '50-59%' 7 '60-69%' 8 '70-79%' 9 '80-89%' 9 '90-100%'
*
recode pmisl (1,2=1) (3 thru 10=2)
val labels pmisl 1 'lt 20' 2 'ge 20'
compute dl=(intview-(lefted-l))-mis1
*
if (dl eq 0) ptimemp=999
do if dl ne 0
 . compute ptimemp=(timemp/dl)*100
end if
do if (pmisl eq 1)
 . compute ptimemp2=ptimemp
end if
*
var labels ptimemp 'prop time in emp lefted-> intview'
recode ptimemp (lo thru 9.99=1) (10.0 thru 19.99=2) (20.00 thru 29.99=3)
 (30.00 thru 39.99=4) (40.00 thru 49.99=5) (50.00 thru 59.99=6)
 (60.00 thru 69.99=7) (70.00 thru 79.99=8) (80.00 thru 89.99=9)
 (90.00 thru 100=10)
val labels ptimemp 1 '<10%' 2 '10-19%' 3 '20-29%' 4 '30-39%' 5 '40-49%'
6 '50-59%' 7 '60-69%' 8 '70-79%' 9 '80-89%' 10 '90-100%'
*
PTIMEMP2 Proportion of time in employment between first leaving full-time education and interview where less than 20% of information is missing.

Where less than 20% of the month in the denominator (*ie:* between leaving education and interview) have missing job information.

Derived from *Your Life since 1974*

Variables used:

PTIMEMP (derived)
PMIS1 (derived)

Frequency

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td><10%</td>
<td>1.00</td>
<td>84</td>
<td>1.5</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>10-19%</td>
<td>2.00</td>
<td>108</td>
<td>1.9</td>
<td>2.3</td>
<td>4.1</td>
</tr>
<tr>
<td>20-29%</td>
<td>3.00</td>
<td>142</td>
<td>2.5</td>
<td>3.1</td>
<td>7.2</td>
</tr>
<tr>
<td>30-39%</td>
<td>4.00</td>
<td>239</td>
<td>4.3</td>
<td>5.1</td>
<td>12.3</td>
</tr>
<tr>
<td>40-49%</td>
<td>5.00</td>
<td>271</td>
<td>4.9</td>
<td>5.8</td>
<td>18.2</td>
</tr>
<tr>
<td>50-59%</td>
<td>6.00</td>
<td>405</td>
<td>7.3</td>
<td>8.7</td>
<td>26.9</td>
</tr>
<tr>
<td>60-69%</td>
<td>7.00</td>
<td>464</td>
<td>8.3</td>
<td>10.0</td>
<td>36.9</td>
</tr>
<tr>
<td>70-79%</td>
<td>8.00</td>
<td>521</td>
<td>9.3</td>
<td>11.2</td>
<td>48.1</td>
</tr>
<tr>
<td>80-89%</td>
<td>9.00</td>
<td>486</td>
<td>8.7</td>
<td>10.5</td>
<td>58.5</td>
</tr>
<tr>
<td>90-100%</td>
<td>10.00</td>
<td>1926</td>
<td>34.5</td>
<td>41.5</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 4646 Missing cases 937

SPSS code

```
vector jbhst=job1 to job216

* declare missing values

missing values job1 to job216 (-1)

* compute whether employment information is missing

count empmiss=job1 to job216 (mis)

select if empmiss lt intview

* do if (pmis1 eq 1)
  . compute ptimemp2=ptimemp
  end if
```
var labels ptimemp2 'prop time in emp lefted-> intview only if <20% miss'
recode ptimemp2 (lo thru 9.99=1) (10.0 thru 19.99=2) (20.00 thru 29.99=3)
(30.00 thru 39.99=4) (40.00 thru 49.99=5) (50.00 thru 59.99=6)
(60.00 thru 69.99=7) (70.00 thru 79.99=8) (80.00 thru 89.99=9)
(90.00 thru 100=10)
val labels ptimemp2 1 '<10%' 2 '10-19%' 3 '20-29%' 4 '30-39%' 5 '40-49%
6 '50-59%' 7 '60-69%' 8 '70-79%' 9 '80-89%' 10 '90-100%'

RETEMP Whether first job following first birth is full-time or part-time

Derived from Your Life since 1974 (Elias data).

Variables used:
whether in a full-time job variables from Elias ACCNCDS dataset
whether in a part-time job variables from Elias ACCNCDS dataset
whether in any employment variables from Elias ACCNCDS dataset
TOTBTH (derived)
MTHRET (derived)
NBIRTHI (derived)

Frequency

RETEMP

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>no return</td>
<td>.00</td>
<td>761</td>
<td>13.1</td>
<td>19.5</td>
<td>19.5</td>
</tr>
<tr>
<td>returned full-time</td>
<td>1.00</td>
<td>1366</td>
<td>23.6</td>
<td>35.1</td>
<td>54.6</td>
</tr>
<tr>
<td>returned part-time</td>
<td>2.00</td>
<td>1724</td>
<td>29.7</td>
<td>44.3</td>
<td>98.9</td>
</tr>
<tr>
<td>ret but no hrs</td>
<td>3.00</td>
<td>43</td>
<td>.7</td>
<td>1.1</td>
<td>100.0</td>
</tr>
<tr>
<td>.</td>
<td></td>
<td>628</td>
<td>10.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no birth</td>
<td>9.00</td>
<td>1277</td>
<td>22.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid cases</td>
<td></td>
<td>3894</td>
<td>628</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5799</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Valid cases</td>
<td></td>
<td>3894</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing cases</td>
<td></td>
<td>1905</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPSS code

**
* define vectors
**
vector ptemp=pt1 to pt216
vector allemp=emp1 to emp216
*
**
* declare missing values
**
loop #i=l to 216
 . if (allemp(#i) eq 9 and ftemp(#i) eq 0) ftemp(#i)=9
 . if (allemp(#i) eq 9 and ptemp(#i) eq 0) ptemp(#i)=9
 . if (allemp(#i) eq 1 and ftemp(#i) eq 0 and ptemp(#i) eq 0) ftemp(#i)=9
 . if (allemp(#i) eq 1 and ftemp(#i) eq 0 and ptemp(#i) eq 0) ptemp(#i)=9
end loop
missing values ed1 to rnar216 (8,9)
*

* compute whether employment information is missing

compute empmiss=sum(emp1 to emp216)
*drop women with missing employment information (n=608)
select if ~missing(empmiss)
*

* compute whether returned full-time or part-time (first return)

compute mthretft=0/* month returned full-time
compute monthft=0
compute mthretpt=0/*month returned part-time
compute monthpt=0
compute mthretem=0/*month returned any emp
compute monthemp=0
if (totbth eq 0) mthretft=999
if (totbth eq 0) monthft=9
if (totbth eq 0) mthretpt=999
if (totbth eq 0) monthpt=9
if (totbth eq 0) mthretem=999
if (totbth eq 0) monthemp=9
missing values mthretft mthretpt mthretem (999)
 /monthft monthpt monthemp(9)
do if -(missing(mthret))
 . loop #i=nbirth1 to intview if (mthretft=0)
 . if (ftemp (#i) eq 1) mthretft=#i
 . if (ftemp (#i) eq 1) monthft=l
 . end loop
 . loop #i=nbirth1 to intview if (mthretpt=0)
 . if (ptemp (#i) eq 1) mthretpt=#i
 . if (ptemp (#i) eq 1) monthpt=l
 . end loop
 . loop #i=nbirth1 to intview if (mthretem=0)
 . if (allemp(#i) eq 1) mthretem=#i
 . if (allemp(#i) eq 1) monthemp=l
 . end loop
end if
compute retemp=0/*whether returned full-time or part-time
if (monthft eq 1 and monthpt eq 0) retemp=1 if (monthft eq 0 and monthpt eq 1) retemp=2
if (monthft eq 0 and monthpt eq 0 and monthemp=l) retemp=3
do if (monthft=l and monthpt=l)
 . if (mthretft le methretpt) retemp=1
 . if (mthretft gt methretpt) retemp=2
 . if (mthretft eq methretpt) retemp=1
 . if (mthretem eq methretem) retemp=1
end if
if (totbth eq 0) retemp=9
missing values retemp (9)
val labels retemp 0 'no return' 1 'returned full-time' 2 'returned part-time'
3 'ret but no hrs' 9 'no birth'
*
RETURN Whether entered employment after first birth

Dummy variable indicating whether a woman has made an entry to employment after her first birth. Derived from *Your Life since 1974* (Elias dataset).

Variables used:
- NBIRTHI (derived)
- MTHRET (derived)
- TOTBTH (derived)

Frequency

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>761</td>
<td>13.1</td>
<td>19.5</td>
<td>19.5</td>
</tr>
<tr>
<td>1.00</td>
<td>3133</td>
<td>54.0</td>
<td>80.5</td>
<td>100.0</td>
</tr>
<tr>
<td>.</td>
<td>628</td>
<td>10.8</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>1277</td>
<td>22.0</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5799</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 3894 Missing cases 1905

SPSS code

```spss
* define vectors
vector allemp=emp1 to ernp216 missing values edl to mar216 (8,9)
* compute whether employment information is missing
compute empmiss=sum(emp1 to emp216)
* drop women missing all employment information
select if ~missing(empmiss)
* compute interval between first birth and first return to employment
compute mthret=0 /*month returned to employment if (totbth eq 0) mthret=999
missing values mthret(999)
val labels mthret 999 'no births'
do if (~missing(mthret))
  loop #i=nbirth1 to intview if (mthret=0)
    compute interval=0
    end loop
  if (allemp(#i) eq 1) mthret=#i
end if
compute interval=0
compute x=nbirth1+1
do if mthret gt 0
  compute return=1 /*women who have returned to employment
  compute interval=interval+1
  end loop
end if
```

NCDS Data Note - Employment and Childbearing - Page 40
if (totbth eq 0) interval=999
if (totbth eq 0) return=9
missing values interval (9999)/return (9)
var labels interval 'int (mths) first birth and return to emp'
val labels interval to return 999 'no births'
STAY Staying in employment

Derived from the Elias *Your Life...* dataset. This was the number of months a woman stayed in employment after making her first return. Counting started from the month after her return entry to employment after her first birth, up to and including her last month in employment, or the month before 1991 interview, whichever was the sooner. Women who left employment before interview were given a value of 1 on the flag variable (LEFT) and women who had not left before they were interviewed (censored cases) were given a value of 0 (see Appendix 1, p6).

Source variables:
- TOTBTH (derived)
- RETURN (derived)
- MTHRET (derived)
- INTVIEW (derived)
TENURE91 Housing tenure in 1991

Variables used:
n503060 n502979

Frequency

TENURE91 Housing tenure in 1991

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>owns outright</td>
<td>1.00</td>
<td>177</td>
<td>3.1</td>
<td>3.3</td>
</tr>
<tr>
<td>mortgage</td>
<td>2.00</td>
<td>4031</td>
<td>69.5</td>
<td>74.4</td>
</tr>
<tr>
<td>social housing</td>
<td>3.00</td>
<td>918</td>
<td>15.8</td>
<td>16.9</td>
</tr>
<tr>
<td>other rented</td>
<td>4.00</td>
<td>243</td>
<td>4.2</td>
<td>4.5</td>
</tr>
<tr>
<td>other</td>
<td>5.00</td>
<td>47</td>
<td>.8</td>
<td>.9</td>
</tr>
<tr>
<td>missing</td>
<td>99.00</td>
<td>383</td>
<td>6.6</td>
<td>Missing</td>
</tr>
</tbody>
</table>

Valid cases 5416 Missing cases 383

SPSS code

* Compute CM's housing tenure in 1991
* compute tenure91=99
if (n502979 eq 1) tenure91=1
if (n502979 eq 2) tenure91=2
if ((n502979 ge 4 and n502979 le 6) and (n503060 eq 1 or n503060 eq2))
tenure91=3
if ((n502979 ge 4 and n502979 le 6) and n503060 gt 2) tenure91=4
if (n502979 gt 6) tenure91=5
*
var labels tenure91 'Housing tenure in 1991'
val labels tenure91 1 'owns outright' 2 'mortgage, 3 'social housing'
4 'other rented' 5 'other' 99 'missing'
missing values tenure91 (99)
TIMEFB Number of month in employment between First leaving full-time education and First birth

Derived from *Your Life since 1974*

Variables used:

NBIRTH1 (derived)
LEFTED (derived)
job history variables derived by Pierelia Paci job1 to job216

Frequency

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMEFB</td>
<td>77.15</td>
<td>46.77</td>
<td>0</td>
<td>202</td>
<td>3849</td>
</tr>
</tbody>
</table>

SPSS code

```
*****************************************************************************
* define vectors
*****************************************************************************
vector jbhst=job1 to job216
*
*****************************************************************************
* declare missing values
*****************************************************************************
missing values job1 to job216 (-1)
*
*****************************************************************************
* compute whether employment information is missing
*****************************************************************************
count empmiss=job1 to job216 (mis)
* select if empmiss lt intview
*
*****************************************************************************
* compute number of months in employment between leaving school and first birth (to be used in ptearn4)
*****************************************************************************
do if ~mis(nbirth1)
compute timefb=0
loop #i=lefted to nbirth1
  if (jbhst(#i) eq 1 or jbhst(#i) eq 3 or jbhst(#i) eq 4) timefb=timefb+1
end loop
```
TIMEMP Number of months in employment between first leaving full-time education and interview

Derived from Your Life at 33

Variables used:

LEFTED (derived)
INTVIEW (derived)

job history variables derived by Pierella Paci (job1 to job216)

Frequency

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMEMP</td>
<td>130.46</td>
<td>51.63</td>
<td>0</td>
<td>210</td>
<td>5583</td>
</tr>
</tbody>
</table>

SPSS code

**
* define vectors
**
vector jbhist=job1 to job216
*
**
* declare missing values
**
missing values job1 to job216 (-1)
*
**
* compute whether employment information is missing
**
count empmiss=job1 to job216 (mis)
* select if empmiss lt intview
*
**
* compute proportion of time in a job leaving school to interview
**
* compute date first leaving FT education
*
missing values job1 to job216 ()
compute lefted=0
loop #i=7 to intview if (lefted=0)
 . if (jbhist(#i) ne 2) lefted=#i
end loop
*
* NB: Case number 050032X has had her first 8 job months recoded. She originally had them as missing and her next 10 month were in full-time ed. So I have recoded job1 to job8 as ft ed too.
execute
if (lefted eq 0) lefted=7 *
read data again *
vector jbhst=job1 to job216
missing values job1 to job216 (-1)
count empmiss=job1 to job216 (mis)
select if empmiss lt intview *
* compute number months in employment between leaving school and interview *
*
compute timemp=0
loop #i=lefted to intview
 . if (jbhst(#i) eq 1 or jbhst(#i) eq 3 or jbhst(#i) eq 4) timemp=timemp+1
end loop
* compute number month with missing job information between leaving education and interview
compute mis1=0
loop #i=lefted to intview
 . if (mis(jbhst(#i))) mis1=mis1+1
end loop
compute pmis1=mis1/(intview-lefted)*100 /* proportion months with missing job info between left ed intview *
* recode pmis1 (lo thru 9.99=1) (10.0 thru 19.99=2) (20.00 thru 29.99=3) (30.00 thru 39.99=4) (40.00 thru 49.99=5) (50.00 thru 59.99=6)
TOTBTH/TOTBTHX

Total number of live births calculated from *Your Life...*, supplemented by information from *pregnancy history* and the *household grid*.

Variables used:

birth to a mother or father from option Elias ACCNDS program
NBIRTHI to NBIRTH9 (derived)

Frequency

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>1209</td>
<td>21.7</td>
<td>23.9</td>
<td></td>
<td>23.9</td>
</tr>
<tr>
<td>1.00</td>
<td>947</td>
<td>17.0</td>
<td>18.7</td>
<td>42.6</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>1969</td>
<td>35.3</td>
<td>38.9</td>
<td>81.6</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>729</td>
<td>13.1</td>
<td>14.4</td>
<td>96.0</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>158</td>
<td>2.8</td>
<td>3.1</td>
<td>99.1</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>35</td>
<td>.6</td>
<td>.7</td>
<td>99.8</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>6</td>
<td>.1</td>
<td>.1</td>
<td>99.9</td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>2</td>
<td>.0</td>
<td>.0</td>
<td>99.9</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>1</td>
<td>.0</td>
<td>.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>2</td>
<td>.0</td>
<td>.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>missing birth info 99.00</td>
<td>525</td>
<td>9.4</td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 5583 100.0 100.0

Valid cases 5058 Missing cases 525

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>934</td>
<td>24.0</td>
<td>24.0</td>
<td></td>
<td>24.0</td>
</tr>
<tr>
<td>2.00</td>
<td>1960</td>
<td>50.3</td>
<td>50.3</td>
<td>74.3</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>773</td>
<td>19.9</td>
<td>19.9</td>
<td>94.2</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>176</td>
<td>4.5</td>
<td>4.5</td>
<td>98.7</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>39</td>
<td>1.0</td>
<td>1.0</td>
<td>99.7</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>7</td>
<td>.2</td>
<td>.2</td>
<td>99.9</td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>2</td>
<td>.1</td>
<td>.1</td>
<td>99.9</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>1</td>
<td>.0</td>
<td>.0</td>
<td>99.9</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>2</td>
<td>.1</td>
<td>.1</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Total 3894 100.0 100.0

Valid cases 3894 Missing cases 0
SPSS code

* compute total number of children resulting from each birth indentified by nbirth1-9
* do
 if missing(nbirth2)
 . compute totbth=1.
 . compute totbthx=1
 . if (mchild1 eq mchild2) totbthx=2
 . if (mchild1 eq mchild2) twinsb1=1
 end
 do if ~missing(nbirth2) and missing (nbirth3)
 . compute totbth=2
 . compute totbthx=2
 . if (mchild2 eq mchild3) totbthx=3
 . if (mchild2 eq mchild3) twinsb2=1
 end
 do if ~missing(nbirth3) and missing(nbirth4)
 . compute totbth=3
 . compute totbthx=3
 . if (mchild3 eq mchild4) totbthx=4
 . if (mchild3 eq mchild4) twinsb3=1
 end
 do if ~missing(nbirth4) and missing(nbirth5)
 . compute totbth=4
 . compute totbthx=4
 . if (mchild4 eq mchild5) totbthx=5
 . if (mchild4 eq mchild5) twinsb4=1
 end
 do if ~missing(nbirth5) and missing(nbirth6)
 . compute totbth=5
 . compute totbthx=5
 . if (mchilds eq mchild6) totbthx=6
 . if (mchilds eq mchild6) twinsb5=1
 end
 do if ~missing(nbirth6) and missing(nbirth7)
 . compute totbth=6
 . compute totbthx=6
 . if (mchild6 eq mchild7) totbthx=7
 . if (mchild6 eq mchild7) twinsb6=1
 end
 do if ~missing(nbirth7) and missing(nbirth8)
 . compute totbth=7
 . compute totbthx=7
 . if (mchild7 eq mchild8) totbthx=8
 end
 do if ~missing(nbirth8) and missing(nbirth9)
 . compute totbth=8
 . compute totbthx=8
 . if (mchild8 eq mchild9) totbthx=9
 end
 if ~missing(nbirth9) totbth=9
 compute totbhx=9
* var labels totbth 'total number of maternities'
var labels totbthx 'total number of children from each birth'
var labels twinsb1 'twins birth 1'
var labels twinsb2 'second birth twins'
var labels twinsb3 'third birth twins'
var labels twinsb4 'fourth birth twins'
var labels twinsbs 'fifth birth twins'
var labels twinsb6 'sixth birth twins'
TOTCHLD Total number of dependent children (ie under 16) in the household in 1991

Calculated from the household grid on p53 of the Cohort Member Interview.

Variables used:

n502620 n502626 n502632 n502638 n502644 n502650 n502656 n502662 n502668 n502618 n502624 n502630 n502636 n502642 n502648 n502654 n502660
AGEYCH (derived)

Frequency

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1084</td>
<td>18.7</td>
<td>18.7</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>2226</td>
<td>38.4</td>
<td>38.4</td>
<td>57.1</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>825</td>
<td>14.2</td>
<td>14.2</td>
<td>71.3</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>207</td>
<td>3.6</td>
<td>3.6</td>
<td>74.9</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>39</td>
<td>.7</td>
<td>.7</td>
<td>75.5</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>4</td>
<td>.1</td>
<td>.1</td>
<td>75.6</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>3</td>
<td>.1</td>
<td>.1</td>
<td>75.7</td>
<td></td>
</tr>
<tr>
<td>no dep chld in hhold</td>
<td>98.00</td>
<td>1222</td>
<td>21.1</td>
<td>96.7</td>
<td></td>
</tr>
<tr>
<td>missing</td>
<td>99.00</td>
<td>189</td>
<td>3.3</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Total 5799 Valid cases 5799 Missing cases 0

SPSS code

NOTE
The following cases need to be corrected for this variable:

do if serial eq '511123T'
compute totchld=98
end if

* compute total number of dependend children in 1991 hosuehold

compute totchld=0
do repeat x=n502620 n502626 n502632 n502638 n502644 n502650 n502656 n502662 n502668/ y=n502618 n502624 n502630 n502636 n502642 n502648 n502654 n502660 n502666
 . if (((x eq 3) or (x eq 4) or (x eq 5) or (x eq 6)) and (y le 16))
 totchld=totchld+1
 end repeat
if (ageych eq 97 or ageych eq 999) totchld=99
if (ageych eq 98 or ageych eq 99) totchld=98
recode totchld (0=98)
* if (totchld eq 99 and neverp eq 1) totchld=98
Variables used:

n540056 n540045 n540053

Frequency

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>professional</td>
<td>1.00</td>
<td>153</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>teachers</td>
<td>2.00</td>
<td>244</td>
<td>4.2</td>
<td>4.2</td>
<td>6.8</td>
</tr>
<tr>
<td>nurses</td>
<td>3.00</td>
<td>511</td>
<td>8.8</td>
<td>8.8</td>
<td>15.7</td>
</tr>
<tr>
<td>intermed n-m</td>
<td>4.00</td>
<td>959</td>
<td>16.5</td>
<td>16.5</td>
<td>32.2</td>
</tr>
<tr>
<td>clerical</td>
<td>5.00</td>
<td>1279</td>
<td>22.1</td>
<td>22.1</td>
<td>54.3</td>
</tr>
<tr>
<td>shop</td>
<td>6.00</td>
<td>416</td>
<td>7.2</td>
<td>7.2</td>
<td>61.4</td>
</tr>
<tr>
<td>skilled man</td>
<td>7.00</td>
<td>503</td>
<td>8.7</td>
<td>8.7</td>
<td>70.1</td>
</tr>
<tr>
<td>semi-skld fee</td>
<td>8.00</td>
<td>280</td>
<td>4.8</td>
<td>4.8</td>
<td>74.9</td>
</tr>
<tr>
<td>childcare/domestic</td>
<td>9.00</td>
<td>618</td>
<td>10.7</td>
<td>10.7</td>
<td>85.6</td>
</tr>
<tr>
<td>other semi-skld</td>
<td>10.00</td>
<td>139</td>
<td>2.4</td>
<td>2.4</td>
<td>88.0</td>
</tr>
<tr>
<td>unskilled</td>
<td>11.00</td>
<td>233</td>
<td>4.0</td>
<td>4.0</td>
<td>92.0</td>
</tr>
<tr>
<td>armed forces</td>
<td>97.00</td>
<td>4</td>
<td>.1</td>
<td>.1</td>
<td>92.1</td>
</tr>
<tr>
<td>missing</td>
<td>99.00</td>
<td>460</td>
<td>7.9</td>
<td>7.9</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5799</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 5799 Missing cases 0
SPSS code

* COMPUTE WES OCCUPATION FOR CURRENT/MOST RECENT JOB IN 1991
* This uses Clare Ward's code
*
* compute occupation after Women and Employment survey using operational
* occupation code, social class and socioeconomic group. After Dale,1987
* "Occupational inequality, gender and life-cycle" in Work, Employment and
* Society, vol 1(3) pp 326-351
*
compute wes=99
do if (n540056 eq 10)
 compute wes=1 /*professional
 else if any(n540045,'032','033','034')
 compute wes=2 /*teachers
 else if any(n540045,'037','038','039','043','045','046','047',
 '048','049','050','0801')
 compute wes=3 /*nurses & related
 else if (n540056 eq 20) or
 any(n540045,'058','061','091','093','104','105','1061) or
 (any(n540045,'186','187') and any(n540053,11,12,21,22))
 compute wes=4 /*other intermediate non-man
 . else if any(n540045,'029','0631,1064','079','112','113','114','115','117',
 '118','119','120')
 compute wes=5 /*clerical
 else if any(n540045,'116','125','127','129','131','133','134')
 compute wes=6 /*shop workers
 else if (n540056 eq 32) or
 any(n540045,'029','061','091','093','104','105','1061) or
 (any(n540045,'186','187') and any(n540053,11,12,21,22))
 compute wes=7 /*skilled
 else if any(n540045,'176','177','178','195','1961,1201','204','212','230',
 '242','244','276','283','285','295','296','290','292','287',
 '297','298','299','333') or
 (any(n540045,'1184','229') and any(n540053,11,12,100,120))
 compute wes=8 /*semi-skilled factory
 else if any(n540045,'144','145','146','151','156','165')
 compute wes=9 /*semi-skilled domestic
 else if (n540056 eq 40 and was no 8 and was no 9) or
 any(n540045,'061','109','110','121','123','126','130','132','157',
 '162','315','328') or
 (any(n540045,'140','142','264','311','317') and any(n540053,11,12,100,120))
 compute wes=10 /*other semi-skilled
 else if (n540056 eq 50)
 compute wes=11 /*unskilled
 else if (n540053 eq 160)
 compute wes=97 /*armed forces
end if *
var labels wes 'wes occup coding, current/last occup in 1991'
val labels was 1 'professional' 2 'teachers' 3 'nurses' 4 'intermed n-m'
5 'clerical' 6 'shop' 7 'skilled man' 8 semi-skld fee' 9 'childcare/domestic, 10 'other semi-skld' 11 'unskilled' 97 'armed forces' 99 'missing'
SECTION 2: DERIVED VARIABLES WHERE "MONTHS" ARE THE CASE

Introduction

This part of the project examined women's labour market participation a) over their entire working life since childbirth and b) from childbirth to the first return to paid work. The periods in question were treated as discrete time monthly records. Individuals' behaviour in each month was calculated and each month's dichotomous activity (whether paid work or not) became a record in an expanded data set.

SPSS program to create a file where "months" are the case

See Appendix 3, Part1

Merging files:
The code for merging separate files is included in Appendix 3, Part2

Frequencies from first birth to interview

272,100 monthly records were produced
(See Appendix 3, Part3)

Frequencies from first birth to first job

91,467 monthly records were produced
(See Appendix 3, Part4)

Job transitions

Each two consecutive months of an individual's work history can be examined on a rolling basis and classified into one of a number of possible transitions or stayer categories.
(See Appendix 3, Part5)
References

APPENDIX 1: Identifying "Mothers"

SPSS Code to identify "mothers" returning to employment after childbirth

* define vectors

vector ftemp=ft1 to ft216
vector ptemp=pt1 to pt216
vector allemp=empl to empl216
vector mbirth=bth1 to bth216
vector educ=ed1 to ed216
vector living=liv1 to liv216
vector married=mar1 to mar216
*vector nbirth(9,f3.0)

* compute month of interview

compute intview=0
loop #i=1 to 216 if (intview=0)
 if (allemp (#i) eq 8) intview=#i
end loop
recode intview (0=216)

execute /*make SPSS read the data once

* define vectors again

vector ftemp=ft1 to ft216
vector ptemp=pt1 to pt216
vector allemp=empl to empl216
vector educ=ed1 to ed216
vector living=liv1 to liv216
vector married=mar1 to mar216
*

* declare missing values

loop #i=1 to 216
 if (allemp(#i) eq 9 and ftemp(#i) eq 0) ftemp(#i)=9
 if (allemp(#i) eq 9 and ptemp(#i) eq 0) ptemp(#i)=9
 if (allemp(#i) eq 1 and ftemp(#i) eq 0 and ptemp(#i) eq 0) ftemp(#i)=9
 if (allemp(#i) eq 1 and ftemp(#i) eq 0 and ptemp(#i) eq 0) ptemp(#i)=9
end loop
missing values ed1 to mar216 (8,9)

* compute whether employment information is missing

compute empmiss=sum(emp1 to emp216)
* drop women with missing employment information (n=608)
select if ~missing(empmiss)

* count total number of births

if (missing(totbth)) totbth=99
missing values totbth (99)
value labels totbth 99 'missing birth info'
* drop women with missing birth information
select if ~missing(totbth)

* code to establish timing of successive events ie. births
compute prev=1 /*birth number
compute prevmth=1 /*month of birth
compute flag=0
loop #a=prevmth to intview
 loop #b=prev to totbth
 if (mbirth (#a) eq 1) nbirth (#b)=#a
 if (mbirth (#a) eq 1) flag=1
 if (mbirth (#a) eq 1) prev=#b+1
 if (mbirth (#a) eq 1) prevmth=#a+1
 end loop if flag
end loop.
if (missing(nbirth1)) nbirth1=999
if (missing(nbirth2)) nbirth2=999
if (missing(nbirth3)) nbirth3=999
if (missing(nbirth4)) nbirth4=999
if (missing(nbirth5)) nbirth5=999
if (missing(nbirth6)) nbirth6=999
if (missing(nbirth7)) nbirth7=999
if (missing(nbirth8)) nbirth8=999
if (missing(nbirth9)) nbirth9=999
missing values nbirth1 to nbirth9 (999)
val labels nbirth1 to nbirth9 999 'no birth in slot'
*
**
* Sorting out the 27 women who's first birth (in the birth history) was a
* stillbirth
**
do if serial='041001K'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
*
do if serial='051012W' /* first two births stillbirths
 compute nbirth1=nbirth3
 compute totbth=2
end if
*
do if serial='087034K'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
*
do if serial='092154Z'
 compute nbirth1=nbirth2
 compute totbth=1
end if
*
do if serial='098022P'
 compute nbirth1=nbirth2
 compute totbth=1
end if
*
do if serial='110318Y'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
*
do if serial='280024J'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
*
do if serial='288025D' /* first two births are stillbirths
 compute nbirth1=nbirth3
 compute totbth=1
end if
*
do if serial='289087J'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
*
do if serial='290011E'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
*
do if serial='308014D'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
*
do if serial='400076S'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
*
do if serial='400103S'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
*
do if serial='481055R'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
*
do if serial='500211C'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
*
do if serial='514020Y'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute nbirth3=nbirth4
 compute totbth=3
end if
*
do if serial='524005K'
 compute nbirth1=nbirth2
 compute totbth=1
end if
*
do if serial='591006R'
 compute totbth=0
end if
*
do if serial='620041Z'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
do if serial='660032Z'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
*
do if serial='740051Y'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute nbirth3=nbirth4
 compute nbirth4=nbirth5
 compute totbth=4
end if
*
do if serial='750063N'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
*
do if serial='815051P'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
*
do if serial='825104Q'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
*
* Sorting out the two women who's first birth (in the birth history) was a miscarriage
*
do if serial='084009U'/* first and third births were miscarriages
 compute nbirth1=nbirth2
 compute nbirth2=nbirth4
 compute totbth=2
end if
*
do if serial='X82108U'/* only birth is a miscarriage
 compute totbth=0
end if
*
compute mthret=0 /*month returned to employment
if (totbth eq 0) mthret=999
if mis(totbth) mthret=9999
missing values mthret(999, 9999)
val labels mthret 999 'no bth' 9999 'missing'
*
do if ~(missing(mthret))
loop #i=nbirth1 to intview if (mthret=0)
 if (jbhst(#i) eq 1 or jbhst(#i) eq 3 or jbhst(#i) eq 4) mthret=#i
end loop
compute interval=0
compute x=nbirth1+1
do if mthret gt 0
 compute return=1 /*women who have returned to emp
 loop #i=x to mthret
 compute interval=interval+1
 end loop
end if
do if mthret=0 /*women who havn't returned to employment
 compute return=0
 loop #i=x to intview
 compute interval=interval+1
 end loop
end if
if (totbth eq 0) interval=999
if (totbth eq 0) return=9
if mis(totbth) interval=9999
if mis(totbth) return=99
missing values interval (999,9999)/return (9,99)
var labels interval 'int (mths) first birth and return to emp'
val labels interval to return 999 'no bths' 9999 'missing'
*

* compute number of births

compute nobths=0
if (totbth eq 1) nobths=1
if (totbth ge 2) nobths=2
if (totbth eq 0) nobths=9
missing values nobths (9)
val labels nobths 9 'no births'
*

* compute how many births in gap between first birth and first return to
* employment

if (totbth eq 0) bthsgap=9
if (totbth eq 1) bthsgap=8
missing values bthsgap (8,9)
do if totbth ge 2
 compute bthsgap=0
 if (return eq 1 and mthret lt nbirth2) bthsgap=1/* no births in gap
 if (return eq 1 and mthret ge nbirth2 and mthret lt nbirth3) bthsgap=2
 + 1 birth in gap
 if (return eq 1 and mthret ge nbirth3) bthsgap=3 /*2+ births in gap
end if
val labels bthsgap 0 'no return' 1 'no bths in gap' 2 '1 bth in gap'
 3 '2+ bths in gap' 8 '1 bth only' 9 'no births'
*

* compute age of mother at first birth

compute magebth1=0
if (totbth eq 0) magebth1=99
if mis(totbth) magebth1=999
if mis(totbth) magebth1=9999
missing values magebth1 (999,9999)
if (nbirth1 ge 171 and nbirth1 le intview) magebth1=4
end if
*missing values magebth1 (99,999)
var labels magebth1 'mothers age at first birth'
val labels magebth1 1 'lt 20 yrs' 2 '20-24 yrs' 3 '25-29 yrs' 4 '30+ yrs'
99 'no birth' 999 'missing'
*
**
*
* for those who returned to employment (first return) after their first
* calculate how long they stayed in employment
**
if ((totbth eq 0) or (totbth eq 1)) stay=999
if (return eq 0) stay=998
missing values stay (998,999)
val labels stay 998 'no return' 999 'no bths'
do if return=1
 compute stay=0
 compute a=0
 loop #i=mthret to intview if (a=0)
 do if (allemp(#i) eq 0)
 compute z=#i
 compute a=1
 else
 compute z=intview
 end if
 end loop
 compute b=mthret+1
 loop #i=b to z
 if (allemp (#i) eq 1) stay=stay+1
 end loop
* compute whether left employment before intview
 compute y=intview-b
 compute left=0
 if (stay gt 0 and stay lt y) left=1
 end if
if (totbth eq 0) left=9
if (return eq 0) left=8
missing values left (8,9)
val labels left 8 'no return' 9 'no bths'
*
**
*
* Compute marital status at time of first birth
**
*
if (totbth eq 0) marital1=9
missing values marital1 (9)
do if totbth gt 0
 compute marital1=0
 loop #i=1 to nbirth1 if (marital1=0)
 if (nbirth1=#i and married(#i) eq 1) marital1=1
 if (nbirth1=#i and married(#i) eq 1 and living(#i) eq 1) marital1=1
 if (nbirth1=#i and married(#i) eq 0 and living(#i) eq 1) marital1=2
 end loop
end if
var labels marital1 'partnership status at first bth'
val labels marital1 1 'married' 2 'cohabiting' 0 'living alone' 9 'no bths'
*
**
*
* compute proportion of time employed since first birth
**
compute totempb1=0
do if totbth ge 1
loop #i=nbirth1 to intview
 if (allemp(#i) eq 1) totempb1=totempb1+1
end loop
end loop
calculate d2 = interview - nbirth1

calculate propemb1 = (totempb1 / d2) * 100

if (propemb1 > 100) propemb1 = 100
endif

if (totbth eq 0) propemb1 = 999
missing values propemb1 (999)
*
recode propemb1 (lo thru 9.99=1) (10.0 thru 19.99=2) (20.0 thru 29.99=3)
(30.0 thru 39.99=4) (40.0 thru 49.99=5) (50.0 thru 59.99=6)
(60.0 thru 69.99=7) (70.0 thru 79.99=8) (80.0 thru 89.99=9)
(90.0 thru 100=10)

var labels propemb1 'Prop time in emp since first bth'
val labels propemb1 12 '<10%' 2 '10-19%' 83 '20-29%' 4 '30-39%' 5 '40-49%'
6 '50-59%' 7 '60-69%' 8 '70-79%' 9 '80-89%' 10 '90-100%'
999 'no bths'
*
if (totbth eq 0) totret = 999
if (totempb1 eq 0) propret = 0

do if totbth ge 1
 . do if totempb1 ge 1
 . calculate totret = 0
 . calculate propret = (totempb1 - interval) / (d2 - interval) * 100
end if
end if

if (tptbth eq 0) propret = 999
missing values propret (999)
*
recode propret (lo thru 9.99=1) (10.0 thru 19.99=2) (20.0 thru 29.99=3)
(30.0 thru 39.99=4) (40.0 thru 49.99=5) (50.0 thru 59.99=6)
(60.0 thru 69.99=7) (70.0 thru 79.99=8) (80.0 thru 89.99=9)
(90.0 thru 100=10)

val labels propret 1 '<10%' 2 '10-19%' 3 '20-29%' 4 '30-39%' 5 '40-49%'
6 '50-59%' 7 '60-69%' 8 '70-79%' 9 '80-89%' 10 '90-100%'

var labels propret 'Prop time in emp since first return'
APPENDIX 2: Data cleaning & problem cases in identifying mothers

Part 1: Birth histories

* Sorting out the 27 women who's first birth (in the birth history) was a stillbirth

do if serial='041001K'.
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
* do if serial='051012W' /* first two births stillbirths
 compute nbirth1=nbirth3
 compute totbth=2
end if
* do if serial='087034K'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
* do if serial='092154Z'
 compute nbirth1=nbirth2
 compute totbth=1
end if
* do if serial='098022P'
 compute nbirth1=nbirth2
 compute totbth=1
end if
* do if serial='110318Y'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
* do if serial='280024J'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
* do if serial='28802SD' /* first two births are stillbirths
 compute nbirth1=nbirth3
 compute totbth=1
end if
* do if serial='289087J'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
* do if serial='290011E'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute totbth=2
end if
* do if serial='308014D'
 compute nbirth1=nbirth2
 compute nbirth2=nbirth3
 compute nbirth3=nbirth3
compute totbth=2
end if
*
do if serial='400076S'
 . compute nbirthl=nbirth2
 . compute nbirth2=nbirth3
 . compute totbth=2
end if
*
do if serial='400103S'
 . compute nbirthl=nbirth2
 . compute nbirth2=nbirth3
 . compute totbth=2
end if
*
do if serial='481055R'
 . compute nbirthl=nbirth2
 . compute nbirth2=nbirth3
 . compute totbth=2
end if
*
do if serial='500211C'
 . compute nbirthl=nbirth2
 . compute nbirth2=nbirth3
 . compute totbth=2
end if
*
do if serial='514020Y'
 . compute nbirthl=nbirth2
 . compute nbirth2=nbirth3
 . compute nbirth3=nbirth4
 . compute totbth=3
end if
*
do if serial='524005K'
 . compute nbirthl=nbirth2
 . compute totbth=1
end if
*
do if serial='591006R'
 . compute totbth=0
end if
*
do if serial='620041Z'
 . compute nbirthl=nbirth2
 . compute nbirth2=nbirth3
 . compute totbth=2
end if
*
do if serial='660032Z'
 . compute nbirthl=nbirth2
 . compute nbirth2=nbirth3
 . compute totbth=2
end if
*
do if serial='740051Y'
 . compute nbirthl=nbirth2
 . compute nbirth2=nbirth3
 . compute nbirth3=nbirth4
 . compute nbirth4=nbirth5
 . compute totbth=4
end if
*
do if serial='750063N'
 . compute nbirthl=nbirth2
 . compute nbirth2=nbirth3
. compute totbth=2
end if
*
do if serial='815051P'
. compute nbirthl=nbirth2
. compute nbirth2=nbirth3
. compute totbth=2
end if
*
do if serial='825104Q'
. compute nbirthl=nbirth2
. compute nbirth2=nbirth3
. compute totbth=2
end if
*
do if serial='850039Y'
. compute totbth=0
end if
*
do if serial='950105S'
. compute totbth=0
end if
*
do if serial='X79044A'
. compute nbirthl=nbirth2
. compute nbirth2=nbirth3
. compute totbth=2
end if

* Sorting out the 2 women whose 1st birth (in the birth history) was a
* miscarriage

do if serial='084009U'/* first and third births were miscarriages
. compute nbirthl=nbirth2
. compute nbirth2=nbirth4
. compute totbth=2
end if
*
do if serial='X82108U'/* only birth is a miscarriage
. compute totbth=0
end if
Part2: Household grid

* Cleaning up the household grid. Acknowledgements to Kate Smith

```plaintext
do if serial='045006S'
  .  compute n502626=3
  .  compute n502632=3
  .  compute n502638=3
end if

do if serial='048019T'
  .  compute n502620=3
end if

do if serial='088026R'
  .  compute n502626=3
  .  compute n502632=3
end if

do if serial='120135W'
  .  compute n502626=3
end if

do if serial='147002B'
  .  compute n502626=3
  .  compute n502632=3
  .  compute n502638=3
  .  compute n502644=3
end if

do if serial='186122J'
  .  compute n502620=1
  .  compute n502626=3
  .  compute n502632=3
end if

do if serial='421062Y'
  .  compute n502620=1
  .  compute n502626=3
  .  compute n502632=3
  .  compute n5026638=3
end if

do if serial='500395S'
  .  compute n502620=1
  .  compute n502626=3
end if

do if serial='510037V'
  .  compute n502626=3
  .  compute n502632=3
end if

do if serial='510085H'
  .  compute n502620=2
  .  compute n502626=3
end if

do if serial='511122R'
  .  compute n502626=3
  .  compute n502632=3
end if

do if serial='516004M'
  .  compute n502620=1
  .  compute n502626=3
end if

do if serial='528044S'
  .  compute n502620=1
  .  compute n502626=3
  .  compute n502632=3
end if

do if serial='52901SQ'
  .  compute n502620=1
  .  compute n502626=3
  .  compute n502632=3
  .  compute n502644=3
```
end if
do if serial='550253C'
 compute n502620=3
end if

do if serial='620110S'
 compute n502620=1
 compute n502626=3
 compute n502632=3
 compute n502638=3
end if

do if serial='620160J'
 compute n502620=1
 compute n502626=3
 compute n502632=3
 compute n502644=3
end if

do if serial='720002W'
 compute n502620=1
 compute n502626=3
 compute n502632=3
end if

do if serial='750109L'
 compute n502620=1
 compute n502626=3
end if

do if serial='840012V'
 compute n502626=3
 compute n502632=3
 compute n502638=3
end if

do if serial='986013P'
 compute n502620=3
end if

do if serial='986383Z'
 compute n502626=3
end if

do if serial='986448B'
 compute n502620=1
 compute n502626=3
 compute n502632=3
 compute n502638=3
end if

end if

**
Part3: Particular problem cases

095034E. This case is identified as a mother in *Your Life...*, and her *household grid* indicates that she lives with her husband and two children. However her *pregnancy history* records that she had two children who are not living with her in 1991. This case seems to be a straightforward coding or punching error.

288025D. This case is identified as a mother in *Your Life...*, and her *household grid* and her pregnancy history indicates that she has two children living with her. However, in her *pregnancy history* the dates of birth for her children have been entered in slots 3 and 4 instead of slots 1 and 2, which have been set to missing.

782123K. This case is identified as a mother in *Your Life...*. Her *pregnancy history* gives the dates of birth for three children and records that two have died. However, her *household grid* indicates that she has two of her own children living with her.

932024Q. This case is identified as a mother in *Your Life...*. Her *pregnancy history* records that she has had 5 births none of whom are living with her in 1991. However, her *household grid* indicates that she has 5 of her own children living with her. This case seems to be a straightforward coding or punching error.

937034V. This case is identified as a mother in *Your Life...*. Her *pregnancy history* records dates of birth for two children (both born in 1991, twins) but is missing on whether they are living with her in 1991. However, in slot 3 she says she has a child living with her but fails to give a date of birth. Her *household grid* indicated that she has one child living with her, who is her own.

986205Y. This case is identified as a mother in *Your Life...*. Her *pregnancy history* records dates of birth for three births in slots 1, 2 and 3. The births in slots 2 and 3 appear to have died but the whereabouts of the birth for slot 1 is missing. Her *household grid* indicates that she lives with her husband and adopted child.

X7904OS. This case is identified as a mother by *Your Life...*. Her *pregnancy history* records that she had one birth who is not living with her in 1991 and her *household grid* indicates that she is living with her partner and two step children.

Particular problem cases (2)

043008L. This case is identified in *Your Life...* as not having any births. Her *pregnancy history* records the date of birth for a child but is missing on whether that child is living with her in 1991, however her *household grid* indicates that her own child is living in the household.

528007L. This case is identified in *Your Life...* as not having any births. However, her *pregnancy history* records that she has two births who were living with her in 1991, with missing dates of birth and her *household grid* indicates that she has two of her own children living in her household.
Particular problem cases (3)

514002W. This case is missing in Your Life.... Her household grid indicates that she has 3 children living in her household, and her pregnancy history records three pregnancies where the child is living with her, but no dates of birth.

783047A. This case is missing in Your Life.... Her pregnancy history records dates of birth for three pregnancies but is missing on whether these children were living with her in 1991. Her household grid indicates that she has two of her own children living with her plus one fostered child.

98639OW. This case is missing in Your Life... and there are no dates of birth or whereabouts of a child recorded in her pregnancy history. Her household grid indicates that there is an adopted child in her household.

X70054E. This case is missing in Your Life.... Her household grid indicates that she has three children living in her household and her pregnancy history records three pregnancies where the child is living with her, but no dates of birth.
APPENDIX 3: Creating a file where "months" are the case

Part 1: SPSS program to create a file where "months" are the case

**
* code to create a file in which the month is the case, for event history
analysis
**

* input program
data list file='eventraw.dat'/
 serial 1-7(a) inpart1 8-13 outpart1 14-19 inpart2 20-25 outpart2 26-31
 inpart3 32-37 outpart3 38-43 inpart4 44-49 outpart4 50-55
 statpar 56-58 statpar2 59-61 statpar3 62-64 statpar4 65-67
 nbirth1 68-71 nbirth2 72-75 nbirth3 76-79 nbirth4 80-83 nbirth5 84-87
 nbirth6 88-91 nbirth7 92-95 nbirth8 96-99 nbirth9 100-103 totbth
 104-106
 hqual 107-108 n4875 109-110 n4870 111-112 interval 113-117
 intview 118-122 fsoc16 123-125 read16 126-129 maths16 130-133
 working 134-137 sjob1 138-141 ejob1 142-145 sjob2 146-149 ejob2 150-153
 sjob3 154-157 ejob3 158-161 sjob4 162-165 ejob4 166-169 sjob5 170-173
 ejob5 174-177 sjob6 178-181 ejob6 182-185 sjob7 186-189 ejob7 190-193
 sjob8 194-197 ejob8 198-201 sjob9 202-205 ejob9 206-209 sjob10 210-213
 ejob10 214-217 sjob11 218-221 ejob11 222-225 sjob12 226-229
 ejob12 230-233 lii23 234-236 mthreta 237-240 ten6mobb 241-243
 tenath 244-246 ten6moab 247-249 parted 250-253 nworking 254-257
 snjob1 258-261 enjob1 262-265 snjob2 266-269 enjob2 270-273
 snjob3 274-277 enjob3 278-281 snjob4 282-285 enjob4 286-289
 snjob5 290-293 enjob5 294-297 snjob6 298-301 enjob6 302-305
 snjob7 306-309 enjob7 310-313 snjob8 314-317 enjob8 318-321
 snjob9 322-325 enjob9 326-329 snjob10 330-333 enjob10 334-337
 snjob11 338-341 enjob11 342-345 snjob12 346-349 enjob12 350-353
 read16ms 354-355 math16ms 356-357 nevpart 358-359 mchild1 360-363
 mchild2 364-367 mchild3 368-371 mchild4 372-375 mchild5 376-379
 mchild6 380-383 mchild7 384-387 mchild8 388-391 mchild9 392-395
 wherkid1 396-397 wherkid2 398-399 wherkid3 400-401 wherkid4 402-403
 wherkid5 404-405 wherkid6 406-407 wherkid7 408-409 wherkid8 410-411
 wherkid9 412-413 c1died 414-417 c2died 418-421 c3died 422-425
c6died 426-429 c1lliv 430-433 c2lliv 434-437 c3lliv 438-441
c6lliv 442-445
*n 148
* leave serial to c6lliv
* *
* re-number children of women who lose their first birth in the first month
* do if (wherkid1 eq 2 or wherkid1 eq 4)
do if (nbirth1 eq c1died) or (nbirth1 eq c1lliv)
 compute nbirth1=mchild2
 compute nbirth2=mchild3
 compute nbirth3=mchild4
 compute nbirth4=mchild5
 compute nbirth5=mchild6
 compute nbirth6=mchild7
 compute nbirth7=mchild8
 compute nbirth8=mchild9
 compute totbth=totbth-1
end if
end if
*
*
loop month=nbirth1 to intview
*
* missing values inpart1 outpart1 inpart2 outpart2 inpart3 outpart3 inpart4
 outpart4 (99999) /
 statfpar statpar2 statpar3 statpar4 lli23 (99)/
 working nbirth1 to nbirth9 nworking mthreta sjob1 to ejob12
 snjob1 to enjob12 mchild1 to mchild9 clried to c61liv (999)/
 sjob1 to ejob12 snjob1 to enjob12 clried to c61liv (998)/
 sjob1 to ejob12 snjob1 to enjob12 (888) /
 fsc16 read16 maths16 (-1)/
 nevpard wherkid1 to wherkid9 (9)
*
* compute time (in completed years) since first birth
* compute year=0
if ((month ge nbirth1) and (month le (nbirth1+11))) year=1
if ((month ge (nbirth1+12)) and (month le (nbirth1+23))) year=2
if ((month ge (nbirth1+24)) and (month le (nbirth1+35))) year=3
if ((month ge (nbirth1+36)) and (month le (nbirth1+47))) year=4
if ((month ge (nbirth1+48)) and (month le (nbirth1+59))) year=5
if ((month ge (nbirth1+60)) and (month le (nbirth1+71))) year=6
if ((month ge (nbirth1+72)) and (month le (nbirth1+83))) year=7
if ((month ge (nbirth1+84)) and (month le (nbirth1+95))) year=8
if ((month ge (nbirth1+96)) and (month le (nbirth1+107))) year=9
if ((month ge (nbirth1+108)) and (month le (nbirth1+119))) year=10
if ((month ge (nbirth1+120)) and (month le (nbirth1+131))) year=11
if ((month ge (nbirth1+132)) and (month le (nbirth1+143))) year=12
if ((month ge (nbirth1+144)) and (month le (nbirth1+155))) year=13
if ((month ge (nbirth1+156)) and (month le (nbirth1+167))) year=14
if ((month ge (nbirth1+168)) and (month le (nbirth1+179))) year=15
if ((month ge (nbirth1+180)) and (month le (nbirth1+191))) year=16
if ((month ge (nbirth1+192)) and (month le (nbirth1+203))) year=17
if ((month ge (nbirth1+204)) and (month le (nbirth1+215))) year=18
* var labels year 'time (yrs) since first birth'
* *
* compute periods that a person is in a partnership
* first recalculate dates so they start counting from Jan 1974 rather than 1900
if (inpart1 eq 0) inp1=0
if (inpart1 ne 0) inp1=inpart1-888
if (outpart1 eq 0) outp1=0
if (outpart1 ne 0) outp1=outpart1-888
if (inpart2 eq 0) inp2=0
if (inpart2 ne 0) inp2=inpart2-888
if (outpart2 eq 0) outp2=0
if (outpart2 ne 0) outp2=outpart2-888
if (inpart3 eq 0) inp3=0
if (inpart3 ne 0) inp3=inpart3-888
if (outpart3 eq 0) outp3=0
if (outpart3 ne 0) outp3=outpart3-888
if (inpart4 eq 0) inp4=0
if (inpart4 ne 0) inp4=inpart4-888
if (outpart4 eq 0) outp4=0
if (outpart4 ne 0) outp4=outpart4-888
* Thanks to Pam for this code
* calculate periods when in a married partnership
compute marhist=0
if (sysmis(inp1) marhist=-9
if (((outp1 eq 0) and (inp1 ge month) and (statpar eq 1) marhist=1
if (((outp1 eq 1) and (inp1 ge month and outp1 gt month) and (statpar eq 1)
 marhist=1 if (((outp2 eq 0) and (inp2 ge month) and (statpar2 eq 1)
 marhist=1
if ((outp2 ge 1) and (inp2 le month and outp2 gt month) and statpar2 eq 1) marhist=1
if ((outp3 eq 0) and (inp3 le month) and statpar3 eq 1) marhist=1
if ((outp3 ge 1) and (inp3 le month and outp3 gt month) and statpar3 eq 1) marhist=1
if ((outp4 eq 0) and (inp4 le month) and statpar4 eq 1) marhist=1
if ((outp4 ge 1) and (inp4 le month and outp4 gt month) and statpar4 eq 1) marhist=1
* calculate periods when in a cohabiting partnership
compute cohabhis=0
if sysmis(inp1) cohabhis=-9
if ((outp1 eq 0) and (inp1 le month) and statfpar eq 2) cohabhis=1
if ((outp1 ge 1) and (inp1 le month and outp1 gt month) and statfpar eq 2) cohabhis=1
if ((outp2 eq 0) and (inp2 le month) and statpar2 eq 2) cohabhis=1
if ((outp2 ge 1) and (inp2 le month and outp2 gt month) and statpar2 eq 2) cohabhis=1
if ((outp3 eq 0) and (inp3 le month) and statpar3 eq 2) cohabhis=1
if ((outp3 ge 1) and (inp3 le month and outp3 gt month) and statpar3 eq 2) cohabhis=1
if ((outp4 eq 0) and (inp4 le month) and statpar4 eq 2) cohabhis=1
if ((outp4 ge 1) and (inp4 le month and outp4 gt month) and statpar4 eq 2) cohabhis=1
* calculate periods when in partnership but where status is unknown
compute parthis=0
if sysmis(inp1) parthis=-9
if ((outp1 eq 0) and (inp1 le month) and (sysmis(statfpar) or statfpar eq 99)) parthis=1
if ((outp1 ge 1) and (inp1 le month and outp1 gt month) and (sysmis(statfpar) or statfpar eq 99)) parthis=1
if ((outp2 eq 0) and (inp2 le month) and (sysmis(statpar2) or statpar2 eq 99)) parthis=1
if ((outp2 ge 1) and (inp2 le month and outp2 gt month) and (sysmis(statpar2) or statpar2 eq 99)) parthis=1
if ((outp3 eq 0) and (inp3 le month) and (sysmis(statpar3) or statpar3 eq 99)) parthis=1
if ((outp3 ge 1) and (inp3 le month and outp3 gt month) and (sysmis(statpar3) or statpar3 eq 99)) parthis=1
if ((outp4 eq 0) and (inp4 le month) and (sysmis(statpar4) or statpar4 eq 99)) parthis=1
if ((outp4 ge 1) and (inp4 le month and outp4 gt month) and (sysmis(statpar4) or statpar4 eq 99)) parthis=1
* missing values marhist cohabhis parthis (-9)
var labels marhist 'currently married'
val labels marhist 1 'yes' 0 'no'
var labels cohabhis 'currently cohabiting'
val labels cohabhis 1 'yes' 0 'no'
var labels parthis 'in partnership status unknown'
val labels parthis 1 'yes' 0 'no'
* * *
* calculate age of youngest child present each month (continuous) *
* compute ageych=0
* do if wherkid1 eq 2 or wherkid1 eq 4
 do if ((month ge clidied) or (month ge cllliv))
compute nbirth1=mchild2
compute nbirth2=mchild3
compute nbirth3=mchild4
compute nbirth4=mchild5
compute nbirth5=mchild6
compute nbirth6=mchild7
compute nbirth7=mchild8
compute nbirth8=mchild9
end if
if ((month eq c1died) or (month eq c1lliv)) totbth=totbth-1
* if ((month ge (nbirth1+192)) or (month ge (nbirth2+192)) or
(month ge (nbirth3+192)) or (month ge (nbirth4+192)) or
(month ge (nbirth5+192)) or (month ge (nbirth6+192)) or
(month ge (nbirth7+192)) or (month ge (nbirth8+192)) or
(month ge (nbirth9+192))
ageych=17
*
if (month ge (nbirth1+180) and month le (nbirth1+191)) or
(month ge (nbirth2+180) and month le (nbirth2+191)) or
(month ge (nbirth3+180) and month le (nbirth3+191)) or
(month ge (nbirth4+180) and month le (nbirth4+191)) or
(month ge (nbirth5+180) and month le (nbirth5+191)) or
(month ge (nbirth6+180) and month le (nbirth6+191)) or
(month ge (nbirth7+180) and month le (nbirth7+191)) or
(month ge (nbirth8+180) and month le (nbirth8+191)) or
(month ge (nbirth9+180) and month le (nbirth9+191))
ageych=16
*
if (month ge (nbirth1+168) and month le (nbirth1+179)) or
(month ge (nbirth2+168) and month le (nbirth2+179)) or
(month ge (nbirth3+168) and month le (nbirth3+179)) or
(month ge (nbirth4+168) and month le (nbirth4+179)) or
(month ge (nbirth5+168) and month le (nbirth5+179)) or
(month ge (nbirth6+168) and month le (nbirth6+179)) or
(month ge (nbirth7+168) and month le (nbirth7+179)) or
(month ge (nbirth8+168) and month le (nbirth8+179)) or
(month ge (nbirth9+168) and month le (nbirth9+179))
ageych=15
*
if (month ge (nbirth1+156) and month le (nbirth1+167)) or
(month ge (nbirth2+156) and month le (nbirth2+167)) or
(month ge (nbirth3+156) and month le (nbirth3+167)) or
(month ge (nbirth4+156) and month le (nbirth4+167)) or
(month ge (nbirth5+156) and month le (nbirth5+167)) or
(month ge (nbirth6+156) and month le (nbirth6+167)) or
(month ge (nbirth7+156) and month le (nbirth7+167)) or
(month ge (nbirth8+156) and month le (nbirth8+167)) or
(month ge (nbirth9+156) and month le (nbirth9+167))
ageych=14
*
if (month ge (nbirth1+144) and month le (nbirth1+155)) or
(month ge (nbirth2+144) and month le (nbirth2+155)) or
(month ge (nbirth3+144) and month le (nbirth3+155)) or
(month ge (nbirth4+144) and month le (nbirth4+155)) or
(month ge (nbirth5+144) and month le (nbirth5+155)) or
(month ge (nbirth6+144) and month le (nbirth6+155)) or
(month ge (nbirth7+144) and month le (nbirth7+155)) or
(month ge (nbirth8+144) and month le (nbirth8+155)) or
(month ge (nbirth9+144) and month le (nbirth9+155))
ageych=13
*
if (month ge (nbirth1+132) and month le (nbirth1+143)) or
(month ge (nbirth2+132) and month le (nbirth2+143)) or
(month ge (nbirth3+132) and month le (nbirth3+143)) or
(month ge (nbirth4+132) and month le (nbirth4+143)) or
(month ge (nbirth5+132) and month le (nbirth5+143)) or
(month ge (nbirth6+132) and month le (nbirth6+143)) or
(month ge (nbirth9+60) and month le (nbirth9+71))
 ageych=6
 * if (month ge (nbirth1+48) and month le (nbirth1+59)) or
 (month ge (nbirth2+48) and month le (nbirth2+59)) or
 (month ge (nbirth3+48) and month le (nbirth3+59)) or
 (month ge (nbirth4+48) and month le (nbirth4+59)) or
 (month ge (nbirth5+48) and month le (nbirth5+59)) or
 (month ge (nbirth6+48) and month le (nbirth6+59)) or
 (month ge (nbirth7+48) and month le (nbirth7+59)) or
 (month ge (nbirth8+48) and month le (nbirth8+59)) or
 (month ge (nbirth9+48) and month le (nbirth9+59))
 ageych=5
 * if (month ge (nbirth1+36) and month le (nbirth1+47)) or
 (month ge (nbirth2+36) and month le (nbirth2+47)) or
 (month ge (nbirth3+36) and month le (nbirth3+47)) or
 (month ge (nbirth4+36) and month le (nbirth4+47)) or
 (month ge (nbirth5+36) and month le (nbirth5+47)) or
 (month ge (nbirth6+36) and month le (nbirth6+47)) or
 (month ge (nbirth7+36) and month le (nbirth7+47)) or
 (month ge (nbirth8+36) and month le (nbirth8+47)) or
 (month ge (nbirth9+36) and month le (nbirth9+47))
 ageych=4
 * if (month ge (nbirth1+24) and month le (nbirth1+35)) or
 (month ge (nbirth2+24) and month le (nbirth2+35)) or
 (month ge (nbirth3+24) and month le (nbirth3+35)) or
 (month ge (nbirth4+24) and month le (nbirth4+35)) or
 (month ge (nbirth5+24) and month le (nbirth5+35)) or
 (month ge (nbirth6+24) and month le (nbirth6+35)) or
 (month ge (nbirth7+24) and month le (nbirth7+35)) or
 (month ge (nbirth8+24) and month le (nbirth8+35)) or
 (month ge (nbirth9+24) and month le (nbirth9+35))
 ageych=3
 * if (month ge (nbirth1+12) and month le (nbirth1+23)) or
 (month ge (nbirth2+12) and month le (nbirth2+23)) or
 (month ge (nbirth3+12) and month le (nbirth3+23)) or
 (month ge (nbirth4+12) and month le (nbirth4+23)) or
 (month ge (nbirth5+12) and month le (nbirth5+23)) or
 (month ge (nbirth6+12) and month le (nbirth6+23)) or
 (month ge (nbirth7+12) and month le (nbirth7+23)) or
 (month ge (nbirth8+12) and month le (nbirth8+23)) or
 (month ge (nbirth9+12) and month le (nbirth9+23))
 ageych=2
 * if ((month ge nbirth1 and month le (nbirth1+11)) or
 (month ge nbirth2 and month le (nbirth2+11)) or
 (month ge nbirth3 and month le (nbirth3+11)) or
 (month ge nbirth4 and month le (nbirth4+11)) or
 (month ge nbirth5 and month le (nbirth5+11)) or
 (month ge nbirth6 and month ge (nbirth6+11)) or
 (month ge nbirth7 and month ge (nbirth7+11)) or
 (month ge nbirth8 and month le (nbirth8+11)) or
 (month ge nbirth9 and month le (nbirth9+11))
 ageych=1
end if
*
doiswherkid2 eq 2 or wherkid2 eq 4
do if ((month ge c2died) or (month ge c2lliv))
 compute nbirth2=mchild3
 compute nbirth3=mchild4
 compute nbirth4=mchild5
 compute nbirth5=mchild6
 compute nbirth6=mchild7
 compute nbirth7=mchild8
 compute nbirth8=mchild9
end if
if ((month eq c2died) or (month eq c2lliv)) totbth=totbth-1
 if ((month ge (nbirth1+192)) or (month ge (nbirth2+192)) or (month ge (nbirth3+192)) or (month ge (nbirth4+192)) or (month ge (nbirth5+192)) or (month ge (nbirth6+192)) or (month ge (nbirth7+192)) or (month ge (nbirth8+192)) or (month ge (nbirth9+192)))
ageych=17
 * if (month ge (nbirth1+180) and month le (nbirth1+191)) or (month ge (nbirth2+180) and month le (nbirth2+191)) or (month ge (nbirth3+180) and month le (nbirth3+191)) or (month ge (nbirth4+180) and month le (nbirth4+191)) or (month ge (nbirth5+180) and month le (nbirth5+191)) or (month ge (nbirth6+180) and month le (nbirth6+191)) or (month ge (nbirth7+180) and month le (nbirth7+191)) or (month ge (nbirth8+180) and month le (nbirth8+191)) or (month ge (nbirth9+180) and month le (nbirth9+191))
ageych=16
 * if (month ge (nbirth1+168) and month le (nbirth1+179)) or (month ge (nbirth2+168) and month le (nbirth2+179)) or (month ge (nbirth3+168) and month le (nbirth3+179)) or (month ge (nbirth4+168) and month le (nbirth4+179)) or (month ge (nbirth5+168) and month le (nbirth5+179)) or (month ge (nbirth6+168) and month le (nbirth6+179)) or (month ge (nbirth7+168) and month le (nbirth7+179)) or (month ge (nbirth8+168) and month le (nbirth8+179)) or (month ge (nbirth9+168) and month le (nbirth9+179))
ageych=15
 * if (month ge (nbirth1+156) and month le (nbirth1+167)) or (month ge (nbirth2+156) and month le (nbirth2+167)) or (month ge (nbirth3+156) and month le (nbirth3+167)) or (month ge (nbirth4+156) and month le (nbirth4+167)) or (month ge (nbirth5+156) and month le (nbirth5+167)) or (month ge (nbirth6+156) and month le (nbirth6+167)) or (month ge (nbirth7+156) and month le (nbirth7+167)) or (month ge (nbirth8+156) and month le (nbirth8+167)) or (month ge (nbirth9+156) and month le (nbirth9+167))
ageych=14
 * if (month ge (nbirth1+144) and month le (nbirth1+155)) or (month ge (nbirth2+144) and month le (nbirth2+155)) or (month ge (nbirth3+144) and month le (nbirth3+155)) or (month ge (nbirth4+144) and month le (nbirth4+155)) or (month ge (nbirth5+144) and month le (nbirth5+155)) or (month ge (nbirth6+144) and month le (nbirth6+155)) or (month ge (nbirth7+144) and month le (nbirth7+155)) or (month ge (nbirth8+144) and month le (nbirth8+155)) or (month ge (nbirth9+144) and month le (nbirth9+155))
ageych=13
 * if (month ge (nbirth1+132) and month le (nbirth1+143)) or (month ge (nbirth2+132) and month le (nbirth2+143)) or (month ge (nbirth3+132) and month le (nbirth3+143)) or (month ge (nbirth4+132) and month le (nbirth4+143)) or (month ge (nbirth5+132) and month le (nbirth5+143)) or (month ge (nbirth6+132) and month le (nbirth6+143)) or (month ge (nbirth7+132) and month le (nbirth7+143)) or (month ge (nbirth8+132) and month le (nbirth8+143)) or (month ge (nbirth9+132) and month le (nbirth9+143))
ageych=12
 * if (month ge (nbirth1+120) and month le (nbirth1+131)) or (month ge (nbirth2+120) and month le (nbirth2+131)) or (month ge (nbirth3+120) and month le (nbirth3+131)) or (month ge (nbirth4+120) and month le (nbirth4+131)) or (month ge (nbirth5+120) and month le (nbirth5+131)) or (month ge (nbirth6+120) and month le (nbirth6+131)) or (month ge (nbirth7+120) and month le (nbirth7+131)) or (month ge (nbirth8+120) and month le (nbirth8+131)) or (month ge (nbirth9+120) and month le (nbirth9+131))

NCDS Data Note - Employment and Childbearing: Appendix3 - Page 7
(month ge \(\text{nbirth4}+120 \)) and month le \(\text{nbirth4}+131 \)) or \\
(month ge \(\text{nbirth5}+120 \)) and month le \(\text{nbirth5}+131 \)) or \\
(month ge \(\text{nbirth6}+120 \)) and month le \(\text{nbirth6}+131 \)) or \\
(month ge \(\text{nbirth7}+120 \)) and month le \(\text{nbirth7}+131 \)) or \\
(month ge \(\text{nbirth8}+120 \)) and month le \(\text{nbirth8}+131 \)) or \\
(month ge \(\text{nbirth9}+120 \)) and month le \(\text{nbirth9}+131 \)) \\
ageych=11 \\
* \\
if (month ge \(\text{nbirth1}+108 \)) and month le \(\text{nbirth1}+119 \)) or \\
(month ge \(\text{nbirth2}+108 \)) and month le \(\text{nbirth2}+119 \)) or \\
(month ge \(\text{nbirth3}+108 \)) and month le \(\text{nbirth3}+119 \)) or \\
(month ge \(\text{nbirth4}+108 \)) and month le \(\text{nbirth4}+119 \)) or \\
(month ge \(\text{nbirth5}+108 \)) and month le \(\text{nbirth5}+119 \)) or \\
(month ge \(\text{nbirth6}+108 \)) and month le \(\text{nbirth6}+119 \)) or \\
(month ge \(\text{nbirth7}+108 \)) and month le \(\text{nbirth7}+119 \)) or \\
(month ge \(\text{nbirth8}+108 \)) and month le \(\text{nbirth8}+119 \)) or \\
(month ge \(\text{nbirth9}+108 \)) and month le \(\text{nbirth9}+119 \)) \\
ageych=10 \\
* \\
if (month ge \(\text{nbirth1}+96 \)) and month le \(\text{nbirth1}+107 \)) or \\
(month ge \(\text{nbirth2}+96 \)) and month le \(\text{nbirth2}+107 \)) or \\
(month ge \(\text{nbirth3}+96 \)) and month le \(\text{nbirth3}+107 \)) or \\
(month ge \(\text{nbirth4}+96 \)) and month le \(\text{nbirth4}+107 \)) or \\
(month ge \(\text{nbirth5}+96 \)) and month le \(\text{nbirth5}+107 \)) or \\
(month ge \(\text{nbirth6}+96 \)) and month le \(\text{nbirth6}+107 \)) or \\
(month ge \(\text{nbirth7}+96 \)) and month le \(\text{nbirth7}+107 \)) or \\
(month ge \(\text{nbirth8}+96 \)) and month le \(\text{nbirth8}+107 \)) or \\
(month ge \(\text{nbirth9}+96 \)) and month le \(\text{nbirth9}+107 \)) \\
ageych=9 \\
* \\
if (month ge \(\text{nbirth1}+84 \)) and month le \(\text{nbirth1}+95 \)) or \\
(month ge \(\text{nbirth2}+84 \)) and month le \(\text{nbirth2}+95 \)) or \\
(month ge \(\text{nbirth3}+84 \)) and month le \(\text{nbirth3}+95 \)) or \\
(month ge \(\text{nbirth4}+84 \)) and month le \(\text{nbirth4}+95 \)) or \\
(month ge \(\text{nbirth5}+84 \)) and month le \(\text{nbirth5}+95 \)) or \\
(month ge \(\text{nbirth6}+84 \)) and month le \(\text{nbirth6}+95 \)) or \\
(month ge \(\text{nbirth7}+84 \)) and month le \(\text{nbirth7}+95 \)) or \\
(month ge \(\text{nbirth8}+84 \)) and month le \(\text{nbirth8}+95 \)) or \\
(month ge \(\text{nbirth9}+84 \)) and month le \(\text{nbirth9}+95 \)) \\
ageych=8 \\
* \\
if (month ge \(\text{nbirth1}+72 \)) and month le \(\text{nbirth1}+83 \)) or \\
(month ge \(\text{nbirth2}+72 \)) and month le \(\text{nbirth2}+83 \)) or \\
(month ge \(\text{nbirth3}+72 \)) and month le \(\text{nbirth3}+83 \)) or \\
(month ge \(\text{nbirth4}+72 \)) and month le \(\text{nbirth4}+83 \)) or \\
(month ge \(\text{nbirth5}+72 \)) and month le \(\text{nbirth5}+83 \)) or \\
(month ge \(\text{nbirth6}+72 \)) and month le \(\text{nbirth6}+83 \)) or \\
(month ge \(\text{nbirth7}+72 \)) and month le \(\text{nbirth7}+83 \)) or \\
(month ge \(\text{nbirth8}+72 \)) and month le \(\text{nbirth8}+83 \)) or \\
(month ge \(\text{nbirth9}+72 \)) and month le \(\text{nbirth9}+83 \)) \\
ageych=7 \\
* \\
if (month ge \(\text{nbirth1}+60 \)) and month le \(\text{nbirth1}+71 \)) or \\
(month ge \(\text{nbirth2}+60 \)) and month le \(\text{nbirth2}+71 \)) or \\
(month ge \(\text{nbirth3}+60 \)) and month le \(\text{nbirth3}+71 \)) or \\
(month ge \(\text{nbirth4}+60 \)) and month le \(\text{nbirth4}+71 \)) or \\
(month ge \(\text{nbirth5}+60 \)) and month le \(\text{nbirth5}+71 \)) or \\
(month ge \(\text{nbirth6}+60 \)) and month le \(\text{nbirth6}+71 \)) or \\
(month ge \(\text{nbirth7}+60 \)) and month le \(\text{nbirth7}+71 \)) or \\
(month ge \(\text{nbirth8}+60 \)) and month le \(\text{nbirth8}+71 \)) or \\
(month ge \(\text{nbirth9}+60 \)) and month le \(\text{nbirth9}+71 \)) \\
ageych=6 \\
* \\
if (month ge \(\text{nbirth1}+48 \)) and month le \(\text{nbirth1}+59 \)) or \\
(month ge \(\text{nbirth2}+48 \)) and month le \(\text{nbirth2}+59 \)) or \\
(month ge \(\text{nbirth3}+48 \)) and month le \(\text{nbirth3}+59 \)) or \\
(month ge \(\text{nbirth4}+48 \)) and month le \(\text{nbirth4}+59 \)) or \\
(month ge \(\text{nbirth5}+48 \)) and month le \(\text{nbirth5}+59 \)) or
(month ge \(nbirth6+48\)) and month le \(nbirth6+59\)) or
(month ge \(nbirth7+48\)) and month le \(nbirth7+59\)) or
(month ge \(nbirth8+48\)) and month le \(nbirth8+59\)) or
(month ge \(nbirth9+48\)) and month le \(nbirth9+59\))
*
ageych=5
*
if (month ge \(nbirth1+47\)) or
(month ge \(nbirth2+47\)) or
(month ge \(nbirth3+47\)) or
(month ge \(nbirth4+47\)) or
(month ge \(nbirth5+47\)) or
(month ge \(nbirth6+47\)) or
(month ge \(nbirth7+47\)) or
(month ge \(nbirth8+47\)) or
(month ge \(nbirth9+47\))
*
ageych=4
*
if (month ge \(nbirth1+35\)) or
(month ge \(nbirth2+35\)) or
(month ge \(nbirth3+35\)) or
(month ge \(nbirth4+35\)) or
(month ge \(nbirth5+35\)) or
(month ge \(nbirth6+35\)) or
(month ge \(nbirth7+35\)) or
(month ge \(nbirth8+35\)) or
(month ge \(nbirth9+35\))
*
ageych=3
*
if (month ge \(nbirth1+23\)) or
(month ge \(nbirth2+23\)) or
(month ge \(nbirth3+23\)) or
(month ge \(nbirth4+23\)) or
(month ge \(nbirth5+23\)) or
(month ge \(nbirth6+23\)) or
(month ge \(nbirth7+23\)) or
(month ge \(nbirth8+23\)) or
(month ge \(nbirth9+23\))
*
ageych=2
*
if (month ge \(nbirth1+11\)) or
(month ge \(nbirth2+11\)) or
(month ge \(nbirth3+11\)) or
(month ge \(nbirth4+11\)) or
(month ge \(nbirth5+11\)) or
(month ge \(nbirth6+11\)) or
(month ge \(nbirth7+11\)) or
(month ge \(nbirth8+11\)) or
(month ge \(nbirth9+11\))
*
ageych=1
end if
*

do if wherkid3 eq 2 or wherkid3 eq 4
 do if (month ge \(c3died\)) or (month ge \(c3lliv\))
 compute nbirth3=mchild4
 compute nbirth4=mchild5
 compute nbirth5=mchild6
 compute nbirth6=mchild7
 compute nbirth7=mchild8
 compute nbirth8=mchild9
 end if
 if (month eq \(c3died\)) or (month eq \(c3lliv\)) totbth=totbth-1
*
if (month ge \(nbirth1+192\)) or (month ge \(nbirth2+192\)) or
(month ge \(nbirth3+192\)) or (month ge \(nbirth4+192\)) or
(month ge \(nbirth5+192\)) or (month ge \(nbirth6+192\)) or
(month ge \(nbirth7+192\)) or (month ge \(nbirth8+192\)) or
(month ge \(nbirth9+192\))
ageych=17
* if (month ge (nbirth1+180) and month le (nbirth1+191)) or
 (month ge (nbirth2+180) and month le (nbirth2+191)) or
 (month ge (nbirth3+180) and month le (nbirth3+191)) or
 (month ge (nbirth4+180) and month le (nbirth4+191)) or
 (month ge (nbirth5+180) and month le (nbirth5+191)) or
 (month ge (nbirth6+180) and month le (nbirth6+191)) or
 (month ge (nbirth7+180) and month le (nbirth7+191)) or
 (month ge (nbirth8+180) and month le (nbirth8+191)) or
 (month ge (nbirth9+180) and month le (nbirth9+191))
ageych=16
*

* if (month ge (nbirth1+168) and month le (nbirth1+179)) or
 (month ge (nbirth2+168) and month le (nbirth2+179)) or
 (month ge (nbirth3+168) and month le (nbirth3+179)) or
 (month ge (nbirth4+168) and month le (nbirth4+179)) or
 (month ge (nbirth5+168) and month le (nbirth5+179)) or
 (month ge (nbirth6+168) and month le (nbirth6+179)) or
 (month ge (nbirth7+168) and month le (nbirth7+179)) or
 (month ge (nbirth8+168) and month le (nbirth8+179)) or
 (month ge (nbirth9+168) and month le (nbirth9+179))
ageych=15
*

* if (month ge (nbirth1+156) and month le (nbirth1+167)) or
 (month ge (nbirth2+156) and month le (nbirth2+167)) or
 (month ge (nbirth3+156) and month le (nbirth3+167)) or
 (month ge (nbirth4+156) and month le (nbirth4+167)) or
 (month ge (nbirth5+156) and month le (nbirth5+167)) or
 (month ge (nbirth6+156) and month le (nbirth6+167)) or
 (month ge (nbirth7+156) and month le (nbirth7+167)) or
 (month ge (nbirth8+156) and month le (nbirth8+167)) or
 (month ge (nbirth9+156) and month le (nbirth9+167))
ageych=14
*

* if (month ge (nbirth1+144) and month le (nbirth1+155)) or
 (month ge (nbirth2+144) and month le (nbirth2+155)) or
 (month ge (nbirth3+144) and month le (nbirth3+155)) or
 (month ge (nbirth4+144) and month le (nbirth4+155)) or
 (month ge (nbirth5+144) and month le (nbirth5+155)) or
 (month ge (nbirth6+144) and month le (nbirth6+155)) or
 (month ge (nbirth7+144) and month le (nbirth7+155)) or
 (month ge (nbirth8+144) and month le (nbirth8+155)) or
 (month ge (nbirth9+144) and month le (nbirth9+155))
ageych=13
*

* if (month ge (nbirth1+132) and month le (nbirth1+143)) or
 (month ge (nbirth2+132) and month le (nbirth2+143)) or
 (month ge (nbirth3+132) and month le (nbirth3+143)) or
 (month ge (nbirth4+132) and month le (nbirth4+143)) or
 (month ge (nbirth5+132) and month le (nbirth5+143)) or
 (month ge (nbirth6+132) and month le (nbirth6+143)) or
 (month ge (nbirth7+132) and month le (nbirth7+143)) or
 (month ge (nbirth8+132) and month le (nbirth8+143)) or
 (month ge (nbirth9+132) and month le (nbirth9+143))
ageych=12
*

* if (month ge (nbirth1+120) and month le (nbirth1+131)) or
 (month ge (nbirth2+120) and month le (nbirth2+131)) or
 (month ge (nbirth3+120) and month le (nbirth3+131)) or
 (month ge (nbirth4+120) and month le (nbirth4+131)) or
 (month ge (nbirth5+120) and month le (nbirth5+131)) or
 (month ge (nbirth6+120) and month le (nbirth6+131)) or
 (month ge (nbirth7+120) and month le (nbirth7+131)) or
 (month ge (nbirth8+120) and month le (nbirth8+131)) or
 (month ge (nbirth9+120) and month le (nbirth9+131))
ageych=11
*

* if (month ge (nbirth1+108) and month le (nbirth1+119)) or
(month ge (nbirth2+108) and month le (nbirth2+119)) or
(month ge (nbirth3+108) and month le (nbirth3+119)) or
(month ge (nbirth4+108) and month le (nbirth4+119)) or
(month ge (nbirth5+108) and month le (nbirth5+119)) or
(month ge (nbirth6+108) and month le (nbirth6+119)) or
(month ge (nbirth7+108) and month le (nbirth7+119)) or
(month ge (nbirth8+108) and month le (nbirth8+119)) or
(month ge (nbirth9+108) and month le (nbirth9+119))
ageych=10

* if (month ge (nbirth1+96) and month le (nbirth1+107)) or
 (month ge (nbirth2+96) and month le (nbirth2+107)) or
 (month ge (nbirth3+96) and month le (nbirth3+107)) or
 (month ge (nbirth4+96) and month le (nbirth4+107)) or
 (month ge (nbirth5+96) and month le (nbirth5+107)) or
 (month ge (nbirth6+96) and month le (nbirth6+107)) or
 (month ge (nbirth7+96) and month le (nbirth7+107)) or
 (month ge (nbirth8+96) and month le (nbirth8+107)) or
 (month ge (nbirth9+96) and month le (nbirth9+107))
ageych=9

* if (month ge (nbirth1+84) and month le (nbirth1+95)) or
 (month ge (nbirth2+84) and month le (nbirth2+95)) or
 (month ge (nbirth3+84) and month le (nbirth3+95)) or
 (month ge (nbirth4+84) and month le (nbirth4+95)) or
 (month ge (nbirth5+84) and month le (nbirth5+95)) or
 (month ge (nbirth6+84) and month le (nbirth6+95)) or
 (month ge (nbirth7+84) and month le (nbirth7+95)) or
 (month ge (nbirth8+84) and month le (nbirth8+95)) or
 (month ge (nbirth9+84) and month le (nbirth9+95))
ageych=8

* if (month ge (nbirth1+72) and month le (nbirth1+83)) or
 (month ge (nbirth2+72) and month le (nbirth2+83)) or
 (month ge (nbirth3+72) and month le (nbirth3+83)) or
 (month ge (nbirth4+72) and month le (nbirth4+83)) or
 (month ge (nbirth5+72) and month le (nbirth5+83)) or
 (month ge (nbirth6+72) and month le (nbirth6+83)) or
 (month ge (nbirth7+72) and month le (nbirth7+83)) or
 (month ge (nbirth8+72) and month le (nbirth8+83)) or
 (month ge (nbirth9+72) and month le (nbirth9+83))
ageych=7

* if (month ge (nbirth1+60) and month le (nbirth1+71)) or
 (month ge (nbirth2+60) and month le (nbirth2+71)) or
 (month ge (nbirth3+60) and month le (nbirth3+71)) or
 (month ge (nbirth4+60) and month le (nbirth4+71)) or
 (month ge (nbirth5+60) and month le (nbirth5+71)) or
 (month ge (nbirth6+60) and month le (nbirth6+71)) or
 (month ge (nbirth7+60) and month le (nbirth7+71)) or
 (month ge (nbirth8+60) and month le (nbirth8+71)) or
 (month ge (nbirth9+60) and month le (nbirth9+71))
ageych=6

* if (month ge (nbirth1+48) and month le (nbirth1+59)) or
 (month ge (nbirth2+48) and month le (nbirth2+59)) or
 (month ge (nbirth3+48) and month le (nbirth3+59)) or
 (month ge (nbirth4+48) and month le (nbirth4+59)) or
 (month ge (nbirth5+48) and month le (nbirth5+59)) or
 (month ge (nbirth6+48) and month le (nbirth6+59)) or
 (month ge (nbirth7+48) and month le (nbirth7+59)) or
 (month ge (nbirth8+48) and month le (nbirth8+59)) or
 (month ge (nbirth9+48) and month le (nbirth9+59))
ageych=5

* if (month ge (nbirth1+36) and month le (nbirth1+47)) or
 (month ge (nbirth2+36) and month le (nbirth2+47)) or
 (month ge (nbirth3+36) and month le (nbirth3+47)) or
(month ge \(nbirth4+36\) and month le \(nbirth4+47\)) or
(month ge \(nbirth5+36\) and month le \(nbirth5+47\)) or
(month ge \(nbirth6+36\) and month le \(nbirth6+47\)) or
(month ge \(nbirth7+36\) and month le \(nbirth7+47\)) or
(month ge \(nbirth8+36\) and month le \(nbirth8+47\)) or
(month ge \(nbirth9+36\) and month le \(nbirth9+47\))
ageych=4

* if (month ge \(nbirth1+24\) and month le \(nbirth1+35\)) or
(month ge \(nbirth2+24\) and month le \(nbirth2+35\)) or
(month ge \(nbirth3+24\) and month le \(nbirth3+35\)) or
(month ge \(nbirth4+24\) and month le \(nbirth4+35\)) or
(month ge \(nbirth5+24\) and month le \(nbirth5+35\)) or
(month ge \(nbirth6+24\) and month le \(nbirth6+35\)) or
(month ge \(nbirth7+24\) and month le \(nbirth7+35\)) or
(month ge \(nbirth8+24\) and month le \(nbirth8+35\)) or
(month ge \(nbirth9+24\) and month le \(nbirth9+35\))
ageych=3

* if (month ge \(nbirth1+12\) and month le \(nbirth1+23\)) or
(month ge \(nbirth2+12\) and month le \(nbirth2+23\)) or
(month ge \(nbirth3+12\) and month le \(nbirth3+23\)) or
(month ge \(nbirth4+12\) and month le \(nbirth4+23\)) or
(month ge \(nbirth5+12\) and month le \(nbirth5+23\)) or
(month ge \(nbirth6+12\) and month le \(nbirth6+23\)) or
(month ge \(nbirth7+12\) and month le \(nbirth7+23\)) or
(month ge \(nbirth8+12\) and month le \(nbirth8+23\)) or
(month ge \(nbirth9+12\) and month le \(nbirth9+23\))
ageych=2

* if ((month ge \(nbirth1\) and month le \(nbirth1+11\)) or
(month ge \(nbirth2\) and month le \(nbirth2+11\)) or
(month ge \(nbirth3\) and month le \(nbirth3+11\)) or
(month ge \(nbirth4\) and month le \(nbirth4+11\)) or
(month ge \(nbirth5\) and month le \(nbirth5+11\)) or
(month ge \(nbirth6\) and month le \(nbirth6+11\)) or
(month ge \(nbirth7\) and month le \(nbirth7+11\)) or
(month ge \(nbirth8\) and month le \(nbirth8+11\)) or
(month ge \(nbirth9\) and month le \(nbirth9+11\)))
ageych=1

end if

* do if wherkid6 eq 2 or wherkid6 eq 4
 do if ((month ge \(c6died\)) or (month ge \(c6lliv\))
 compute nbirth6=mchild7
 compute nbirth7=mchild8
 compute nbirth8=mchild9
 end if
 if ((month eq \(c6died\)) or month eq \(c6lliv\)) totbth=totbth-1
* if ((month ge \(nbirth1+192\)) or (month ge \(nbirth2+192\)) or
(month ge \(nbirth3+192\)) or (month ge \(nbirth4+192\)) or
(month ge \(nbirth5+192\)) or (month ge \(nbirth6+192\)) or
(month ge \(nbirth7+192\)) or (month ge \(nbirth8+192\)) or
(month ge \(nbirth9+192\)))
ageych=17

* if (month ge \(nbirth1+180\) and month le \(nbirth1+191\)) or
(month ge \(nbirth2+180\) and month le \(nbirth2+191\)) or
(month ge \(nbirth3+180\) and month le \(nbirth3+191\)) or
(month ge \(nbirth4+180\) and month le \(nbirth4+191\)) or
(month ge \(nbirth5+180\) and month le \(nbirth5+191\)) or
(month ge \(nbirth6+180\) and month le \(nbirth6+191\)) or
(month ge \(nbirth7+180\) and month le \(nbirth7+191\)) or
(month ge \(nbirth8+180\) and month le \(nbirth8+191\)) or
(month ge \(nbirth9+180\) and month le \(nbirth9+191\))
ageych=16
if (month ge (nbirth1+168) and month le (nbirth1+179)) or
(month ge (nbirth2+168) and month le (nbirth2+179)) or
(month ge (nbirth3+168) and month le (nbirth3+179)) or
(month ge (nbirth4+168) and month le (nbirth4+179)) or
(month ge (nbirth5+168) and month le (nbirth5+179)) or
(month ge (nbirth6+168) and month le (nbirth6+179)) or
(month ge (nbirth7+168) and month le (nbirth7+179)) or
(month ge (nbirth8+168) and month le (nbirth8+179)) or
(month ge (nbirth9+168) and month le (nbirth9+179))
ageych=15

if (month ge (nbirth1+156) and month le (nbirth1+167)) or
(month ge (nbirth2+156) and month le (nbirth2+167)) or
(month ge (nbirth3+156) and month le (nbirth3+167)) or
(month ge (nbirth4+156) and month le (nbirth4+167)) or
(month ge (nbirth5+156) and month le (nbirth5+167)) or
(month ge (nbirth6+156) and month le (nbirth6+167)) or
(month ge (nbirth7+156) and month le (nbirth7+167)) or
(month ge (nbirth8+156) and month le (nbirth8+167)) or
(month ge (nbirth9+156) and month le (nbirth9+167))
ageych=14

if (month ge (nbirth1+144) and month le (nbirth1+155)) or
(month ge (nbirth2+144) and month le (nbirth2+155)) or
(month ge (nbirth3+144) and month le (nbirth3+155)) or
(month ge (nbirth4+144) and month le (nbirth4+155)) or
(month ge (nbirth5+144) and month le (nbirth5+155)) or
(month ge (nbirth6+144) and month le (nbirth6+155)) or
(month ge (nbirth7+144) and month le (nbirth7+155)) or
(month ge (nbirth8+144) and month le (nbirth8+155)) or
(month ge (nbirth9+144) and month le (nbirth9+155))
ageych=13

if (month ge (nbirth1+132) and month le (nbirth1+143)) or
(month ge (nbirth2+132) and month le (nbirth2+143)) or
(month ge (nbirth3+132) and month le (nbirth3+143)) or
(month ge (nbirth4+132) and month le (nbirth4+143)) or
(month ge (nbirth5+132) and month le (nbirth5+143)) or
(month ge (nbirth6+132) and month le (nbirth6+143)) or
(month ge (nbirth7+132) and month le (nbirth7+143)) or
(month ge (nbirth8+132) and month le (nbirth8+143)) or
(month ge (nbirth9+132) and month le (nbirth9+143))
ageych=12

if (month ge (nbirth1+120) and month le (nbirth1+131)) or
(month ge (nbirth2+120) and month le (nbirth2+131)) or
(month ge (nbirth3+120) and month le (nbirth3+131)) or
(month ge (nbirth4+120) and month le (nbirth4+131)) or
(month ge (nbirth5+120) and month le (nbirth5+131)) or
(month ge (nbirth6+120) and month le (nbirth6+131)) or
(month ge (nbirth7+120) and month le (nbirth7+131)) or
(month ge (nbirth8+120) and month le (nbirth8+131)) or
(month ge (nbirth9+120) and month le (nbirth9+131))
ageych=11

if (month ge (nbirth1+108) and month le (nbirth1+119)) or
(month ge (nbirth2+108) and month le (nbirth2+119)) or
(month ge (nbirth3+108) and month le (nbirth3+119)) or
(month ge (nbirth4+108) and month le (nbirth4+119)) or
(month ge (nbirth5+108) and month le (nbirth5+119)) or
(month ge (nbirth6+108) and month le (nbirth6+119)) or
(month ge (nbirth7+108) and month le (nbirth7+119)) or
(month ge (nbirth8+108) and month le (nbirth8+119)) or
(month ge (nbirth9+108) and month le (nbirth9+119))
ageych=10

if (month ge (nbirth1+96) and month le (nbirth1+107)) or
(month ge (nbirth2+96) and month le (nbirth2+107)) or
(month ge (nbirth3+96) and month le (nbirth3+107)) or
(month ge (nbirth4+96) and month le (nbirth4+107)) or
(month ge (nbirth5+96) and month le (nbirth5+107)) or
(month ge (nbirth6+96) and month le (nbirth6+107)) or
(month ge (nbirth7+96) and month le (nbirth7+107)) or
(month ge (nbirth8+96) and month le (nbirth8+107)) or
(month ge (nbirth9+96) and month le (nbirth9+107))
ageych=9

if (month ge (nbirth1+84) and month le (nbirth1+95)) or
(month ge (nbirth2+84) and month le (nbirth2+95)) or
(month ge (nbirth3+84) and month le (nbirth3+95)) or
(month ge (nbirth4+84) and month le (nbirth4+95)) or
(month ge (nbirth5+84) and month le (nbirth5+95)) or
(month ge (nbirth6+84) and month le (nbirth6+95)) or
(month ge (nbirth7+84) and month le (nbirth7+95)) or
(month ge (nbirth8+84) and month le (nbirth8+95)) or
(month ge (nbirth9+84) and month le (nbirth9+95))
ageych=8

if (month ge (nbirth1+72) and month le (nbirth1+83)) or
(month ge (nbirth2+72) and month le (nbirth2+83)) or
(month ge (nbirth3+72) and month le (nbirth3+83)) or
(month ge (nbirth4+72) and month le (nbirth4+83)) or
(month ge (nbirth5+72) and month le (nbirth5+83)) or
(month ge (nbirth6+72) and month le (nbirth6+83)) or
(month ge (nbirth7+72) and month le (nbirth7+83)) or
(month ge (nbirth8+72) and month le (nbirth8+83)) or
(month ge (nbirth9+72) and month le (nbirth9+83))
ageych=7

if (month ge (nbirth1+60) and month le (nbirth1+71)) or
(month ge (nbirth2+60) and month le (nbirth2+71)) or
(month ge (nbirth3+60) and month le (nbirth3+71)) or
(month ge (nbirth4+60) and month le (nbirth4+71)) or
(month ge (nbirth5+60) and month le (nbirth5+71)) or
(month ge (nbirth6+60) and month le (nbirth6+71)) or
(month ge (nbirth7+60) and month le (nbirth7+71)) or
(month ge (nbirth8+60) and month le (nbirth8+71)) or
(month ge (nbirth9+60) and month le (nbirth9+71))
ageych=6

if (month ge (nbirth1+48) and month le (nbirth1+59)) or
(month ge (nbirth2+48) and month le (nbirth2+59)) or
(month ge (nbirth3+48) and month le (nbirth3+59)) or
(month ge (nbirth4+48) and month le (nbirth4+59)) or
(month ge (nbirth5+48) and month le (nbirth5+59)) or
(month ge (nbirth6+48) and month le (nbirth6+59)) or
(month ge (nbirth7+48) and month le (nbirth7+59)) or
(month ge (nbirth8+48) and month le (nbirth8+59)) or
(month ge (nbirth9+48) and month le (nbirth9+59))
ageych=5

if (month ge (nbirth1+36) and month le (nbirth1+47)) or
(month ge (nbirth2+36) and month le (nbirth2+47)) or
(month ge (nbirth3+36) and month le (nbirth3+47)) or
(month ge (nbirth4+36) and month le (nbirth4+47)) or
(month ge (nbirth5+36) and month le (nbirth5+47)) or
(month ge (nbirth6+36) and month le (nbirth6+47)) or
(month ge (nbirth7+36) and month le (nbirth7+47)) or
(month ge (nbirth8+36) and month le (nbirth8+47)) or
(month ge (nbirth9+36) and month le (nbirth9+47))
ageych=4

if (month ge (nbirth1+24) and month le (nbirth1+35)) or
(month ge (nbirth2+24) and month le (nbirth2+35)) or
(month ge (nbirth3+24) and month le (nbirth3+35)) or
(month ge (nbirth4+24) and month le (nbirth4+35)) or
(month ge (nbirth5+24) and month le (nbirth5+35)) or
(month ge (nbirth6+24) and month le (nbirth6+35)) or
(month ge (nbirth7+24) and month le (nbirth7+35)) or
(month ge (nbirth8+24) and month le (nbirth8+35)) or
(month ge (nbirth9+24) and month le (nbirth9+35))
ageych=3
*
if (month ge (nbirth1+12) and month le (nbirth1+23)) or
(month ge (nbirth2+12) and month le (nbirth2+23)) or
(month ge (nbirth3+12) and month le (nbirth3+23)) or
(month ge (nbirth4+12) and month le (nbirth4+23)) or
(month ge (nbirth5+12) and month le (nbirth5+23)) or
(month ge (nbirth6+12) and month le (nbirth6+23)) or
(month ge (nbirth7+12) and month le (nbirth7+23)) or
(month ge (nbirth8+12) and month le (nbirth8+23)) or
(month ge (nbirth9+12) and month le (nbirth9+23))
ageych=2
*
if ((month ge nbirth1 and month le (nbirth1+11)) or
(month ge nbirth2 and month le (nbirth1+11)) or
(month ge nbirth3 and month le (nbirth1+11)) or
(month ge nbirth4 and month le (nbirth1+11)) or
(month ge nbirth5 and month le (nbirth1+11)) or
(month ge nbirth6 and month le (nbirth1+11)) or
(month ge nbirth7 and month le (nbirth1+11)) or
(month ge nbirth8 and month le (nbirth1+11)) or
(month ge nbirth9 and month le (nbirth1+11)))
ageych=1
end if
*
if ((month ge nbirth1+192)) or (month ge (nbirth2+192)) or
(month ge (nbirth3+192)) or (month ge (nbirth4+192)) or
(month ge (nbirth5+192)) or (month ge (nbirth6+192)) or
(month ge (nbirth7+192)) or (month ge (nbirth8+192)) or
(month ge (nbirth9+192))
ageych=17
*
if (month ge (nbirth1+180) and month le (nbirth1+191)) or
(month ge (nbirth2+180) and month le (nbirth2+191)) or
(month ge (nbirth3+180) and month le (nbirth3+191)) or
(month ge (nbirth4+180) and month le (nbirth4+191)) or
(month ge (nbirth5+180) and month le (nbirth5+191)) or
(month ge (nbirth6+180) and month le (nbirth6+191)) or
(month ge (nbirth7+180) and month le (nbirth7+191)) or
(month ge (nbirth8+180) and month le (nbirth8+191)) or
(month ge (nbirth9+180) and month le (nbirth9+191))
ageych=16
*
if (month ge (nbirth1+168) and month le (nbirth1+179)) or
(month ge (nbirth2+168) and month le (nbirth2+179)) or
(month ge (nbirth3+168) and month le (nbirth3+179)) or
(month ge (nbirth4+168) and month le (nbirth4+179)) or
(month ge (nbirth5+168) and month le (nbirth5+179)) or
(month ge (nbirth6+168) and month le (nbirth6+179)) or
(month ge (nbirth7+168) and month le (nbirth7+179)) or
(month ge (nbirth8+168) and month le (nbirth8+179)) or
(month ge (nbirth9+168) and month le (nbirth9+179))
ageych=15
*
if (month ge (nbirth1+156) and month le (nbirth1+167)) or
(month ge (nbirth2+156) and month le (nbirth2+167)) or
(month ge (nbirth3+156) and month le (nbirth3+167)) or
(month ge (nbirth4+156) and month le (nbirth4+167)) or
(month ge (nbirth5+156) and month le (nbirth5+167)) or
(month ge (nbirth6+156) and month le (nbirth6+167)) or
(month ge (nbirth7+156) and month le (nbirth7+167)) or
(month ge (nbirth8+156) and month le (nbirth8+167)) or
(month ge (nbirth9+156) and month le (nbirth9+167)) or
(month ge (nbirth9+156) and month le (nbirth9+167))
ageych=14
*
if (month ge (nbirth1+144) and month le (nbirth1+155)) or
(month ge (nbirth2+144) and month le (nbirth2+155)) or
(month ge (nbirth3+144) and month le (nbirth3+155)) or
(month ge (nbirth4+144) and month le (nbirth4+155)) or
(month ge (nbirth5+144) and month le (nbirth5+155)) or
(month ge (nbirth6+144) and month le (nbirth6+155)) or
(month ge (nbirth7+144) and month le (nbirth7+155)) or
(month ge (nbirth8+144) and month le (nbirth8+155)) or
(month ge (nbirth9+144) and month le (nbirth9+155))
ageych=13
*
if (month ge (nbirth1+132) and month le (nbirth1+143)) or
(month ge (nbirth2+132) and month le (nbirth2+143)) or
(month ge (nbirth3+132) and month le (nbirth3+143)) or
(month ge (nbirth4+132) and month le (nbirth4+143)) or
(month ge (nbirth5+132) and month le (nbirth5+143)) or
(month ge (nbirth6+132) and month le (nbirth6+143)) or
(month ge (nbirth7+132) and month le (nbirth7+143)) or
(month ge (nbirth8+132) and month le (nbirth8+143)) or
(month ge (nbirth9+132) and month le (nbirth9+143))
ageych=12
*
if (month ge (nbirth1+120) and month le (nbirth1+131)) or
(month ge (nbirth2+120) and month le (nbirth2+131)) or
(month ge (nbirth3+120) and month le (nbirth3+131)) or
(month ge (nbirth4+120) and month le (nbirth4+131)) or
(month ge (nbirth5+120) and month le (nbirth5+131)) or
(month ge (nbirth6+120) and month le (nbirth6+131)) or
(month ge (nbirth7+120) and month le (nbirth7+131)) or
(month ge (nbirth8+120) and month le (nbirth8+131)) or
(month ge (nbirth9+120) and month le (nbirth9+131))
ageych=11
*
if (month ge (nbirth1+108) and month le (nbirth1+119)) or
(month ge (nbirth2+108) and month le (nbirth2+119)) or
(month ge (nbirth3+108) and month le (nbirth3+119)) or
(month ge (nbirth4+108) and month le (nbirth4+119)) or
(month ge (nbirth5+108) and month le (nbirth5+119)) or
(month ge (nbirth6+108) and month le (nbirth6+119)) or
(month ge (nbirth7+108) and month le (nbirth7+119)) or
(month ge (nbirth8+108) and month le (nbirth8+119)) or
(month ge (nbirth9+108) and month le (nbirth9+119))
ageych=10
*
if (month ge (nbirth1+96) and month le (nbirth1+107)) or
(month ge (nbirth2+96) and month le (nbirth2+107)) or
(month ge (nbirth3+96) and month le (nbirth3+107)) or
(month ge (nbirth4+96) and month le (nbirth4+107)) or
(month ge (nbirth5+96) and month le (nbirth5+107)) or
(month ge (nbirth6+96) and month le (nbirth6+107)) or
(month ge (nbirth7+96) and month le (nbirth7+107)) or
(month ge (nbirth8+96) and month le (nbirth8+107)) or
(month ge (nbirth9+96) and month le (nbirth9+107))
ageych=9
*
if (month ge (nbirth1+84) and month le (nbirth1+95)) or
(month ge (nbirth2+84) and month le (nbirth2+95)) or
(month ge (nbirth3+84) and month le (nbirth3+95)) or
(month ge (nbirth4+84) and month le (nbirth4+95)) or
(month ge (nbirth5+84) and month le (nbirth5+95)) or
(month ge (nbirth6+84) and month le (nbirth6+95)) or
(month ge (nbirth7+84) and month le (nbirth7+95)) or
(month ge (nbirth8+84) and month le (nbirth8+95)) or
(month ge (nbirth9+84) and month le (nbirth9+95))
ageych=8
if (month ge (nbirth1+72) and month le (nbirth1+83)) or
 (month ge (nbirth2+72) and month le (nbirth2+83)) or
 (month ge (nbirth3+72) and month le (nbirth3+83)) or
 (month ge (nbirth4+72) and month le (nbirth4+83)) or
 (month ge (nbirth5+72) and month le (nbirth5+83)) or
 (month ge (nbirth6+72) and month le (nbirth6+83)) or
 (month ge (nbirth7+72) and month le (nbirth7+83)) or
 (month ge (nbirth8+72) and month le (nbirth8+83)) or
 (month ge (nbirth9+72) and month le (nbirth9+83))
ageych=7
*
if (month ge (nbirth1+60) and month le (nbirth1+71)) or
 (month ge (nbirth2+60) and month le (nbirth2+71)) or
 (month ge (nbirth3+60) and month le (nbirth3+71)) or
 (month ge (nbirth4+60) and month le (nbirth4+71)) or
 (month ge (nbirth5+60) and month le (nbirth5+71)) or
 (month ge (nbirth6+60) and month le (nbirth6+71)) or
 (month ge (nbirth7+60) and month le (nbirth7+71)) or
 (month ge (nbirth8+60) and month le (nbirth8+71)) or
 (month ge (nbirth9+60) and month le (nbirth9+71))
ageych=6
*
if (month ge (nbirth1+48) and month le (nbirth1+59)) or
 (month ge (nbirth2+48) and month le (nbirth2+59)) or
 (month ge (nbirth3+48) and month le (nbirth3+59)) or
 (month ge (nbirth4+48) and month le (nbirth4+59)) or
 (month ge (nbirth5+48) and month le (nbirth5+59)) or
 (month ge (nbirth6+48) and month le (nbirth6+59)) or
 (month ge (nbirth7+48) and month le (nbirth7+59)) or
 (month ge (nbirth8+48) and month le (nbirth8+59)) or
 (month ge (nbirth9+48) and month le (nbirth9+59))
ageych=5
*
if (month ge (nbirth1+36) and month le (nbirth1+47)) or
 (month ge (nbirth2+36) and month le (nbirth2+47)) or
 (month ge (nbirth3+36) and month le (nbirth3+47)) or
 (month ge (nbirth4+36) and month le (nbirth4+47)) or
 (month ge (nbirth5+36) and month le (nbirth5+47)) or
 (month ge (nbirth6+36) and month le (nbirth6+47)) or
 (month ge (nbirth7+36) and month le (nbirth7+47)) or
 (month ge (nbirth8+36) and month le (nbirth8+47)) or
 (month ge (nbirth9+36) and month le (nbirth9+47))
ageych=4
*
if (month ge (nbirth1+24) and month le (nbirth1+35)) or
 (month ge (nbirth2+24) and month le (nbirth2+35)) or
 (month ge (nbirth3+24) and month le (nbirth3+35)) or
 (month ge (nbirth4+24) and month le (nbirth4+35)) or
 (month ge (nbirth5+24) and month le (nbirth5+35)) or
 (month ge (nbirth6+24) and month le (nbirth6+35)) or
 (month ge (nbirth7+24) and month le (nbirth7+35)) or
 (month ge (nbirth8+24) and month le (nbirth8+35)) or
 (month ge (nbirth9+24) and month le (nbirth9+35))
ageych=3
*
if (month ge (nbirth1+12) and month le (nbirth1+23)) or
 (month ge (nbirth2+12) and month le (nbirth2+23)) or
 (month ge (nbirth3+12) and month le (nbirth3+23)) or
 (month ge (nbirth4+12) and month le (nbirth4+23)) or
 (month ge (nbirth5+12) and month le (nbirth5+23)) or
 (month ge (nbirth6+12) and month le (nbirth6+23)) or
 (month ge (nbirth7+12) and month le (nbirth7+23)) or
 (month ge (nbirth8+12) and month le (nbirth8+23)) or
 (month ge (nbirth9+12) and month le (nbirth9+23))
ageych=2
*
if (month ge nbirth1 and month le (nbirth1+11)) or
(month ge nbirth2 and month le (nbirth2+11)) or
(month ge nbirth3 and month le (nbirth3+11)) or
(month ge nbirth4 and month le (nbirth4+11)) or
(month ge nbirth5 and month le (nbirth5+11)) or
(month ge nbirth6 and month ge (nbirth6+11)) or
(month ge nbirth7 and month ge (nbirth7+11)) or
(month ge nbirth8 and month le (nbirth8+11)) or
(month ge nbirth9 and month le (nbirth9+11)))

ageych=1

* var labels ageych 'age of youngest child'
val labels ageych 1 '<1 yr' 2 '1-2 yrs' 3 '2-3 yrs' 4 '3-4 yrs' 5 '4-5 yrs'
 6 '5-6 yrs' 7 '6-7 yrs' 8 '7-8 yrs' 9 '8-9 yrs' 10 '9-10 yrs'
 11 '10-11 yrs' 12 '11-12 yrs' 13 '12-13 yrs' 14 '13-14 yrs'
 15 '14-15 yrs' 16 '15-16 yrs' 17 '16 yrs+' 0 'no child'

* compute number of children present each month
compute nchild=0

* do if totbth eq 1
 if (month ge nbirth1) nchild=1
end if

do if totbth eq 2 and (mchild1 ne mchild2)
 if ((month ge nbirth1) and (month lt nbirth2)) nchild=1
 if (month ge nbirth2) nchild=2
end if

do if totbth eq 2 and (mchild1 eq mchild2)
 if (month ge nbirth1) nchild=2
end if

do if totbth eq 3 and (mchild2 ne mchild3)
 if ((month ge nbirth1) and (month lt nbirth2)) nchild=1
 if ((month ge nbirth2) and (month lt nbirth3)) nchild=2
 if (month ge nbirth3) nchild=3
end if

do if totbth eq 3 and (mchild2 eq mchild3)
 if ((month ge nbirth1) and (month lt nbirth2)) nchild=1
 if (month ge nbirth2) nchild=3
end if

do if totbth eq 4 and (mchild3 ne mchild4)
 if ((month ge nbirth1) and (month lt nbirth2)) nchild=1
 if ((month ge nbirth2) and (month lt nbirth3)) nchild=2
 if ((month ge nbirth3) and (month lt nbirth4)) nchild=3
 if (month ge nbirth4) nchild=4
end if

do if totbth eq 4 and (mchild3 eq mchild4)
 if (month ge nbirth1) and (month lt nbirth2)) nchild=1
 if (month ge nbirth2) and (month lt nbirth3)) nchild=2
 if (month ge nbirth3) nchild=4
end if

do if totbth eq 5 and (mchild4 ne mchild5)
 if ((month ge nbirth1) and (month lt nbirth2)) nchild=1
 if ((month ge nbirth2) and (month lt nbirth3)) nchild=2
 if ((month ge nbirth3) and (month lt nbirth4)) nchild=3
 if ((month ge nbirth4) and (month lt nbirth5)) nchild=4
 if (month ge nbirth5) nchild=5
end if

do if totbth eq 5 and (mchild4 eq mchild5)
 if ((month ge nbirth1) and (month lt nbirth2)) nchild=1
 if ((month ge nbirth2) and (month lt nbirth3)) nchild=2
 if (month ge nbirth4) nchild=5
end if

do if totbth eq 6 and (mchild5 ne mchild6)
 if (month ge nbirth1) and (month lt nbirth2)) nchild=1
 if (month ge nbirth2) and (month lt nbirth3)) nchild=2
end if
if (month ge nbirth3) and (month lt nbirth4) nchild=3
if (month ge nbirth4) and (month lt nbirth5) nchild=4
if (month ge nbirth5) and (month lt nbirth6) nchild=5
if (month ge nbirth6) nchild=6
end if
do if totbth eq 6 and (mchild5 eq mchild6)
 if (month ge nbirth1) and (month lt nbirth2) nchild=1
 if (month ge nbirth2) and (month lt nbirth3) nchild=2
 if (month ge nbirth3) and (month lt nbirth4) nchild=3
 if (month ge nbirth4) and (month lt nbirth5) nchild=4
 if (month ge nbirth5) nchild=6
end if
do if totbth eq 7 and (mchild6 ne mchild7)
 if (month ge nbirth1) and (month lt nbirth2) nchild=1
 if (month ge nbirth2) and (month lt nbirth3) nchild=2
 if (month ge nbirth3) and (month lt nbirth4) nchild=3
 if (month ge nbirth4) and (month lt nbirth5) nchild=4
 if (month ge nbirth5) and (month lt nbirth6) nchild=5
 if (month ge nbirth6) and (month lt nbirth7) nchild=6
 if (month ge nbirth7) nchild=7
end if
do if totbth eq 7 and (mchild6 eq mchild7)
 if (month ge nbirth1) and (month lt nbirth2) nchild=1
 if (month ge nbirth2) and (month lt nbirth3) nchild=2
 if (month ge nbirth3) and (month lt nbirth4) nchild=3
 if (month ge nbirth4) and (month lt nbirth5) nchild=4
 if (month ge nbirth5) and (month lt nbirth6) nchild=5
 if (month ge nbirth6) nchild=7
end if
do if totbth eq 8 and (mchild7 ne mchild8)
 if (month ge nbirth1) and (month lt nbirth2) nchild=1
 if (month ge nbirth2) and (month lt nbirth3) nchild=2
 if (month ge nbirth3) and (month lt nbirth4) nchild=3
 if (month ge nbirth4) and (month lt nbirth5) nchild=4
 if (month ge nbirth5) and (month lt nbirth6) nchild=5
 if (month ge nbirth6) and (month lt nbirth7) nchild=6
 if (month ge nbirth7) and (month lt nbirth8) nchild=7
 if (month ge nbirth8) nchild=8
end if
do if do if totbth eq 8 and (mchild7 eq mchild8)
 if (month ge nbirth1) and (month lt nbirth2) nchild=1
 if (month ge nbirth2) and (month lt nbirth3) nchild=2
 if (month ge nbirth3) and (month lt nbirth4) nchild=3
 if (month ge nbirth4) and (month lt nbirth5) nchild=4
 if (month ge nbirth5) and (month lt nbirth6) nchild=5
 if (month ge nbirth6) and (month lt nbirth7) nchild=6
 if (month ge nbirth7) and (month lt nbirth8) nchild=7
 if (month ge nbirth8) nchild=8
end if
do if totbth eq 9 and (mchild8 ne mchild9)
 if (month ge nbirth1) and (month lt nbirth2) nchild=1
 if (month ge nbirth2) and (month lt nbirth3) nchild=2
 if (month ge nbirth3) and (month lt nbirth4) nchild=3
 if (month ge nbirth4) and (month lt nbirth5) nchild=4
 if (month ge nbirth5) and (month lt nbirth6) nchild=5
 if (month ge nbirth6) and (month lt nbirth7) nchild=6
 if (month ge nbirth7) and (month lt nbirth8) nchild=7
 if (month ge nbirth8) and (month lt nbirth9) nchild=8
 if (month ge nbirth9) nchild=9
end if
do if totbth eq 9 and (mchild8 eq mchild9)
 if (month ge nbirth1) and (month lt nbirth2) nchild=1
 if (month ge nbirth2) and (month lt nbirth3) nchild=2
 if (month ge nbirth3) and (month lt nbirth4) nchild=3
 if (month ge nbirth4) and (month lt nbirth5) nchild=4
 if (month ge nbirth5) and (month lt nbirth6) nchild=5
 if (month ge nbirth6) and (month lt nbirth7) nchild=6
 if (month ge nbirth7) and (month lt nbirth8) nchild=7
 if (month ge nbirth8) nchild=9
end if
* var labels nchild 'number of children'
* *do if wherkid1 eq 2 or wherkid1 eq 4
* do if (month eq c1died) or (month eq c1lliv)
* compute nchild=nchild-1
* end if
*end if
*
* * calculate mothers age each month since first birth
* compute mage1=0
if (month lt 3) mage1=15
if (month ge 3 and month le 14) mage1=16
if (month ge 15 and month le 26) mage1=17
if (month ge 27 and month le 38) mage1=18
if (month ge 39 and month le 50) mage1=19
if (month ge 51 and month le 62) mage1=20
if (month ge 63 and month le 74) mage1=21
if (month ge 75 and month le 86) mage1=22
if (month ge 87 and month le 98) mage1=23
if (month ge 99 and month le 110) mage1=24
if (month ge 111 and month le 122) mage1=25
if (month ge 123 and month le 134) mage1=26
if (month ge 135 and month le 146) mage1=27
if (month ge 147 and month le 158) mage1=28
if (month ge 159 and month le 170) mage1=29
if (month ge 171 and month le 182) mage1=30
if (month ge 183 and month le 194) mage1=31
if (month ge 195 and month le 206) mage1=32
if (month ge 207) mage1=33
* var labels mage1 'mothers age since first birth'
* *
* * compute whether a month is 3 months before or 7 months after a birth
* compute bthclose=0
if (month le (nbirth1+7)) bthclose=1
if (month ge (nbirth2-3) and (month le (nbirth2+7))) bthclose=1
if (month ge (nbirth3-3) and (month le (nbirth3+7))) bthclose=1
if (month ge (nbirth4-3) and (month le (nbirth4+7))) bthclose=1
if (month ge (nbirth5-3) and (month le (nbirth5+7))) bthclose=1
if (month ge (nbirth6-3) and (month le (nbirth6+7))) bthclose=1
if (month ge (nbirth7-3) and (month le (nbirth7+7))) bthclose=1
if (month ge (nbirth8-3) and (month le (nbirth8+8))) bthclose=1
if (month ge (nbirth9-3) and (month le (nbirth9+9))) bthclose=1
* +
* +
* calculate periods when partner is in a job
compute partjob=-9 *
* first calculate periods when partner is not in a job *
if ((enjob1 eq 0) and (snjob1 le month)) partjob=0
if ((enjob1 ge 1) and (snjob1 le month and enjob1 gt month)) partjob=0
if ((enjob2 eq 0) and (snjob2 le month)) partjob=0
if ((enjob2 ge 1) and (snjob2 le month and enjob2 gt month)) partjob=0
if ((enjob3 eq 0) and (snjob3 le month)) partjob=0
if ((enjob3 ge 1) and (snjob3 le month and enjob3 gt month)) partjob=0
if ((enjob4 eq 0) and (snjob4 le month)) partjob=0
if ((enjob4 ge 1) and (snjob4 le month and enjob4 gt month)) partjob=0
if ((enjob5 eq 0) and (snjob5 le month)) partjob=0
if ((enjob5 ge 1) and (snjob5 le month and enjob5 gt month)) partjob=0
if ((enjob6 eq 0) and (snjob6 le month)) partjob=0
if ((enjob6 ge 1) and (snjob6 le month and enjob6 gt month)) partjob=0
if ((enjob7 eq 0) and (snjob7 le month)) partjob=0
if ((enjob7 ge 1) and (snjob7 le month and enjob7 gt month)) partjob=0
if ((enjob8 eq 0) and (snjob8 le month)) partjob=0
if ((enjob8 ge 1) and (snjob8 le month and enjob8 gt month)) partjob=0
if ((enjob9 eq 0) and (snjob9 le month)) partjob=0
if ((enjob9 ge 1) and (snjob9 le month and enjob9 gt month)) partjob=0
if ((enjob10 eq 0) and (snjob10 le month)) partjob=0
if ((enjob10 ge 1) and (snjob10 le month and enjob10 gt month)) partjob=0
if ((enjob11 eq 0) and (snjob11 le month)) partjob=0
if ((enjob11 ge 1) and (snjob11 le month and enjob11 gt month)) partjob=0
if ((enjob12 eq 0) and (snjob12 le month)) partjob=0
if ((enjob12 ge 1) and (snjob12 le month and enjob12 gt month)) partjob=0
* * now calculate periods when partner is in a job *
* if ((ejob1 eq 0) and (sjob1 le month)) partjob=1
if ((ejob1 ge 1) and (sjob1 le month and ejob1 gt month)) partjob=1
if ((ejob2 eq 0) and (sjob2 le month)) partjob=1
if ((ejob2 ge 1) and (sjob2 le month and ejob2 gt month)) partjob=1
if ((ejob3 eq 0) and (sjob3 le month)) partjob=1
if ((ejob3 ge 1) and (sjob3 le month and ejob3 gt month)) partjob=1
if ((ejob4 eq 0) and (sjob4 le month)) partjob=1
if ((ejob4 ge 1) and (sjob4 le month and ejob4 gt month)) partjob=1
if ((ejob5 eq 0) and (sjob5 le month)) partjob=1
if ((ejob5 ge 1) and (sjob5 le month and ejob5 gt month)) partjob=1
if ((ejob6 eq 0) and (sjob6 le month)) partjob=1
if ((ejob6 ge 1) and (sjob6 le month and ejob6 gt month)) partjob=1
if ((ejob7 eq 0) and (sjob7 le month)) partjob=1
if ((ejob7 ge 1) and (sjob7 le month and ejob7 gt month)) partjob=1
if ((ejob8 eq 0) and (sjob8 le month)) partjob=1
if ((ejob8 ge 1) and (sjob8 le month and ejob8 gt month)) partjob=1
if ((ejob9 eq 0) and (sjob9 le month)) partjob=1
if ((ejob9 ge 1) and (sjob9 le month and ejob9 gt month)) partjob=1
if ((ejob10 eq 0) and (sjob10 le month)) partjob=1
if ((ejob10 ge 1) and (sjob10 le month and ejob10 gt month)) partjob=1
if ((ejob11 eq 0) and (sjob11 le month)) partjob=1
if ((ejob11 ge 1) and (sjob11 le month and ejob11 gt month)) partjob=1
if ((ejob12 eq 0) and (sjob12 le month)) partjob=1
if ((ejob12 ge 1) and (sjob12 le month and ejob12 gt month)) partjob=1
* if (sjob1 eq 998) partjob=-8 /* never had a job */
* var labels partjob 'partner in a job'
val labels partjob 1 'yes' 0 'no' -9 'no partner/missing' -8 'never job'
* *
* Compute unemployment rate for each month from Jan 1974 to Dec 1991
* Refs: Employment Gazette, Dec 1990. 601-608,
* Employment Gazette, Nov 1991, S22-S23
* Employment Gazette, Feb 1993, S22-S23
* *
* 1974
if (month eq 1) unemprat=1.8
if (month ge 2 and month le 3) unemprat=1.9
if (month eq 4) unemprat=2.0
if (month eq 5) unemprat=1.9
if (month ge 6 and month le 7) unemprat=2.0
if (month ge 8 and month le 11) unemprat=2.1
if (month eq 12) unemprat=2.2
* * 1975
if (month eq 13) unemprat=2.3
if (month eq 14) unemprat=2.4
if (month eq 15) unemprat=2.5
if (month eq 16) unemprat=2.7
if (month eq 17) unemprat=2.9
if (month eq 18) unemprat=3.0
if (month eq 19) unemprat=3.2
if (month eq 20) unemprat=3.3
if (month eq 21) unemprat=3.4
if (month eq 22) unemprat=3.6
if (month eq 23) unemprat=3.8
if (month eq 24) unemprat=3.9
*
* 1976
if (month eq 25) unemprat=3.9
if (month eq 26) unemprat=4.0
if (month ge 27 and month le 28) unemprat=4.1
if (month ge 29 and month le 31) unemprat=4.2
if (month ge 32 and month le 33) unemprat=4.3
if (month eq 34) unemprat=4.2
if (month ge 35 and month le 36) unemprat=4.3
*
* 1977
if (month ge 37 and month le 41) unemprat=4.3
if (month eq 42) unemprat=4.4
if (month ge 43 and month le 44) unemprat=4.5
if (month ge 45 and month le 48) unemprat=4.6
*
* 1978
if (month eq 49) unemprat=4.5
if (month ge 50 and month le 54) unemprat=4.4
if (month eq 55) unemprat=4.3
if (month eq 56) unemprat=4.4
if (month ge 57 and month le 58) unemprat=4.3
if (month ge 59 and month le 60) unemprat=4.2
*
* 1979
if (month eq 61) unemprat=4.1
if (month ge 62 and month le 63) unemprat=4.2
if (month ge 64 and month le 65) unemprat=4.1
if (month ge 66 and month le 67) unemprat=4.0
if (month ge 68 and month le 69) unemprat=3.9
if (month eq 70) unemprat=4.0 if (month eq 71) unemprat=3.9
if (month eq 72) unemprat=4.0
*
* 1980
if (month eq 73) unemprat=4.0
if (month eq 74) unemprat=4.1
if (month eq 75) unemprat=4.2
if (month eq 76) unemprat=4.4
if (month eq 77) unemprat=4.6
if (month eq 78) unemprat=4.7
if (month eq 79) unemprat=5.0
if (month eq 80) unemprat=5.3
if (month eq 81) unemprat=5.6
if (month eq 82) unemprat=5.9
if (month eq 83) unemprat=6.4
if (month eq 84) unemprat=6.7
*
* 1981
if (month eq 85) unemprat=7.0
if (month eq 86) unemprat=7.2
if (month eq 87) unemprat=7.5
if (month eq 88) unemprat=7.7
if (month eq 89) unemprat=8.0
if (month eq 90) unemprat=8.1
if (month eq 91) unemprat=8.3
if (month eq 92) unemprat=8.5
if (month eq 93) unemprat=8.6
if (month eq 94) unemprat=8.8
if (month eq 95) unemprat=8.9
if (month eq 96) unemprat=9.0
*
* 1982
if (month ge 97 and month le 98) unemprat=9.1
if (month eq 99) unemprat=9.2
if (month ge 100 and month le 101) unemprat=9.3
if (month eq 102) unemprat=9.4
if (month eq 103) unemprat=9.6
if (month eq 104) unemprat=9.7
if (month eq 105) unemprat=9.8
if (month eq 106) unemprat=9.9
if (month eq 107) unemprat=10.0
if (month eq 108) unemprat=10.1
*
* 1983
if (month ge 109 and month le 110) unemprat=10.2
if (month eq 111) unemprat=10.3
if (month eq 112) unemprat=10.4
if (month ge 113 and month le 114) unemprat=10.5
if (month eq 115) unemprat=10.6
if (month eq 116) unemprat=10.5
if (month ge 117 and month le 119) unemprat=10.6
if (month eq 120) unemprat=10.7
*
* 1984
if (month ge 121 and month le 122) unemprat=10.5
if (month ge 123 and month le 126) unemprat=10.6
if (month ge 127 and month le 128) unemprat=10.7
if (month eq 129) unemprat=10.8
if (month ge 130 and month le 132) unemprat=10.9
* * 1985
if (month eq 133) unemprat=10.8
if (month ge 134 and month le 140) unemprat=10.9
if (month ge 141 and month le 143) unemprat=11.0
if (month eq 144) unemprat=11.1
* 1986
if (month ge 145 and month le 146) unemprat=11.1
if (month ge 147 and month le 153) unemprat=11.2
if (month ge 154 and month le 155) unemprat=11.1
if (month eq 156) unemprat=11.0
*
* 1987
if (month eq 157) unemprat=10.9
if (month eq 158) unemprat=10.7
if (month eq 159) unemprat=10.6
if (month eq 160) unemprat=10.5
if (month eq 161) unemprat=10.3
if (month eq 162) unemprat=10.1
if (month eq 163) unemprat=10.0
if (month eq 164) unemprat=9.8
if (month eq 165) unemprat=9.6
if (month eq 166) unemprat=9.4
if (month eq 167) unemprat=9.2
if (month eq 168) unemprat=9.1
*
* 1988
if (month eq 169) unemprat=8.9
if (month eq 170) unemprat=8.7
if (month eq 171) unemprat=8.6
if (month eq 172) unemprat=8.5
if (month eq 173) unemprat=8.3
if (month eq 174) unemprat=8.1
if (month eq 175) unemprat=7.9
if (month eq 176) unemprat=7.8
if (month eq 177) unemprat=7.7
if (month eq 178) unemprat=7.5
if (month eq 179) unemprat=7.4
if (month eq 180) unemprat=7.2
*
* 1989
if (month eq 181) unemprat=7.0
if (month eq 182) unemprat=6.8
if (month eq 183) unemprat=6.7
if (month eq 184) unemprat=6.5
if (month eq 185) unemprat=6.4
if (month eq 186) unemprat=6.3
if (month eq 187) unemprat=6.2
if (month eq 188) unemprat=6.1
if (month ge 189 and month le 190) unemprat=5.9
if (month eq 191) unemprat=5.8
if (month eq 192) unemprat=5.7
* 1990
if (month ge 193 and month le 194) unemprat=5.7
if (month ge 195 and month le 196) unemprat=5.6
if (month ge 197 and month le 199) unemprat=5.7
if (month eq 200) unemprat=5.8
if (month eq 201) unemprat=5.9
if (month eq 202) unemprat=6.0
if (month eq 203) unemprat=6.2 if (month eq 204) unemprat=6.5
* 1991
if (month eq 205) unemprat=6.7
if (month eq 206) unemprat=7.0
if (month eq 207) unemprat=7.4
if (month eq 208) unemprat=7.7
if (month eq 209) unemprat=7.9
if (month eq 210) unemprat=8.1
if (month eq 211) unemprat=8.4
if (month eq 212) unemprat=8.6
if (month eq 213) unemprat=8.7
if (month eq 214) unemprat=8.8
if (month eq 215) unemprat=8.9
if (month eq 216) unemprat=9.0
* * var labels unemprat 'Monthly unemployment rate'
* ** end case
end loop
end input program
* *
**
* Now compute variables that are constant
**
* * compute dummy's for highest educational qualification in 1991
* *
compute none=0
if (hiqual eq 1) none=1
if (hiqual eq 0) none=9
compute some=0
if (hiqual eq 2) some=1
if (hiqual eq 0) some=9
compute olev=0
if (hiqual eq 3) olev=1
if (hiqual eq 0) olev=9
compute alev=0
if (hiqual eq 4 or hiqual eq 5) alev=1
if (hiqual eq 0) alev=9
compute degree=0
if (hiqual eq 5) degree=1
if (hiqual eq 0) degree=9
* missing values none some olev alev degree (9)
* *
*
* attitudes to work at age 23 (NCDS4)
* compute workatt1=n4875 /* a woman can get ahead as easily as a man
compute workatt2=n4870 /* if unemployed, people think you're a nobody
*
* compute maternity leave indicator
compute matleav1=0 if (interval eq 0 or interval lt 9) matleav1=1
*
* compute dummies for CM's father's social class at age 16
* compute proff=0
if (fsoc16 eq 1) proff=1
compute intermed=0
if (fsoc16 eq 2) intermed=1
compute nonman=0
if (fsoc16 eq 3) nonman=1
compute skman=0
if (fsoc16 eq 4) skman=1
compute sskill=0
if (fsoc16 eq 5 or fsoc16 eq 6) sskill=1
compute unskill=0
if (fsoc16 eq 7) unskill=1
compute classmis=0
if (fsoc16 eq 8 or mis(fsoc16)) classmis=1
*
* calculate an id number for each cohort member, starting at 1.
* compute id=0
if ~missing (lag(id)) id=(lag(id))
if (serial ne (lag(serial))) id=(id+1)
*
* compute dummies for mother's age at first birth
* compute magebth1=0
if (nbirth1 ge 1 and nbirth1 le 50) magebth1=1
compute magebth2=0
if (nbirth1 ge 51 and nbirth1 le 110) magebth2=1
compute magebth3=0
if (nbirth1 ge 111 and nbirth1 le 170) magebth3=1
compute magebth4=0
if (nbirth1 ge 171 and nbirth1 le intview) magebth4=1
* var labels magebth1 'mothers age at first birth lt 20 yrs'
 /magebth2 'mothers age at first birth 20-24 yrs'
 /magebth3 'mothers age at first birth 25-29 yrs'
 /magebth4 'mothers age at first birth 30+ yrs'
*
* compute dummies for tenure variables
* tenuren 6 month before birth (bb)
compute ownocbb=0
if (ten6mobb eq 1) ownocbb=1
if (ten6mobb eq 9) ownocbb=9
compute socbb=0
if (ten6mobb eq 2) socbb=1
if (ten6mobb eq 9) socbb=9
compute rentbb=0
if (ten6mobb eq 3) rentbb=1 if (ten6mobb eq 9) rentbb=9
compute parbb=0
if (ten6mobb eq 4) parbb=1
if (ten6mobb eq 9) parbb=9
*
missing values ownocbb socbb rentbb parbb (9)
*
* tenure at birth (atb)
compute ownocatb=0
if (tenatb eq 1) ownocatb=1
if (tenatb eq 9) ownocatb=9
compute socatb=0
if (tenatb eq 2) socatb=1
if (tenatb eq 9) socatb=9
compute rentatb=0
if (tenatb eq 3) rentatb=1
if (tenatb eq 9) rentatb=9
compute paratb=0
if (tenatb eq 4) paratb=1
if (tenatb eq 9) paratb=9
*
missing values ownocatb socatb rentatb paratb (9)
*
* tenure 6 months after birth (ab)
compute ownocab=0
if (ten6moab eq 1) ownocab=1
if (ten6moab eq 9) ownocab=9
compute socab=0
if (ten6moab eq 2) socab=1
if (ten6moab eq 9) socab=9
compute rentab=0
if (ten6moab eq 3) rentab=1
if (ten6moab eq 9) rentab=9
compute parab=0
if (ten6moab eq 4) parab=1
if (ten6moab eq 9) parab=9
*
missing values ownocab socab rentab parab (9)
*
* compute dummies for current partner's age at leaving FT education
*
* compute age leaving FT ed 18yrs or less
compute pedle18=parted
if any(parted, 1, 2, 3, 4) pedle18=1
if any(parted, 5, 6, 7, 8, 999) pedle18=0
if (parted eq 99) pedle18=9
*
compute age leaving FT ed 19yrs+
compute pedge19=parted
if any(parted, 5, 6, 7, 8) pedge19=1
if any(parted, 1, 2, 3, 4, 999) pedge19=0
if (parted eq 99) pedge19=9
*
missing values pedle18 pedge19 (9)
*
select if totbth ge 1
* save outfile=
* fin
Part 2: Merging files

*
import file='filename.exp'
save outfile='filename.sys' /keep varname varname
fin
* SPSS command file to merge two system files
+
get file='filea.sys'
sort cases by serial
*save outfile='fileb.sys'
+
get file='file1.sys'
sort cases by serial
match files file=*
/file='file2.sys'
/ by serial month
*select if (serial ne ' ')
*select if (n622=2)/*keep women only
save outfile='file3.sys'
finish
Part 3: Frequencies from first birth to interview

YEAR

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>839</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>46493</td>
<td>11.5</td>
<td>11.5</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>45002</td>
<td>11.1</td>
<td>11.1</td>
<td>22.8</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>42975</td>
<td>10.6</td>
<td>10.6</td>
<td>33.5</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>40548</td>
<td>10.0</td>
<td>10.0</td>
<td>43.5</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>37795</td>
<td>9.3</td>
<td>9.3</td>
<td>52.8</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>34859</td>
<td>8.6</td>
<td>8.6</td>
<td>61.5</td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>31382</td>
<td>7.8</td>
<td>7.8</td>
<td>69.2</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>27737</td>
<td>6.9</td>
<td>6.9</td>
<td>76.1</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>24132</td>
<td>6.0</td>
<td>6.0</td>
<td>82.1</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>20389</td>
<td>5.0</td>
<td>5.0</td>
<td>87.1</td>
<td></td>
</tr>
<tr>
<td>11.00</td>
<td>16444</td>
<td>4.1</td>
<td>4.1</td>
<td>91.2</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>12752</td>
<td>3.2</td>
<td>3.2</td>
<td>94.3</td>
<td></td>
</tr>
<tr>
<td>13.00</td>
<td>9414</td>
<td>2.3</td>
<td>2.3</td>
<td>96.7</td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>6574</td>
<td>1.6</td>
<td>1.6</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>15.00</td>
<td>4171</td>
<td>1.0</td>
<td>1.0</td>
<td>99.3</td>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td>2125</td>
<td>.5</td>
<td>.5</td>
<td>99.8</td>
<td></td>
</tr>
<tr>
<td>17.00</td>
<td>653</td>
<td>.2</td>
<td>.2</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0

MARHIST currently married

Value Label | Value | Frequency | Percent | Valid Percent | Cum Percent |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-9.00</td>
<td>8725</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>.00</td>
<td>156182</td>
<td>38.6</td>
<td>38.6</td>
<td>40.8</td>
</tr>
<tr>
<td>yes</td>
<td>1.00</td>
<td>239377</td>
<td>59.2</td>
<td>59.2</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0

COHABHIS currently cohabiting

Value Label | Value | Frequency | Percent | Valid Percent | Cum Percent |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-9.00</td>
<td>7236</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>.00</td>
<td>279684</td>
<td>69.2</td>
<td>69.2</td>
<td>71.0</td>
</tr>
<tr>
<td>yes</td>
<td>1.00</td>
<td>117364</td>
<td>29.0</td>
<td>29.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0

PARTHIS in partnership status unknown

Value Label | Value | Frequency | Percent | Valid Percent | Cum Percent |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-9.00</td>
<td>8839</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>.00</td>
<td>395445</td>
<td>97.8</td>
<td>97.8</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0

AGEYCH age of youngest child

Value Label | Value | Frequency | Percent | Valid Percent | Cum Percent |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><= 1 yr</td>
<td>.00</td>
<td>776</td>
<td>.2</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>1-2 yrs</td>
<td>1.00</td>
<td>94496</td>
<td>23.4</td>
<td>23.4</td>
<td>23.6</td>
</tr>
<tr>
<td>2-3 yrs</td>
<td>2.00</td>
<td>83261</td>
<td>20.6</td>
<td>20.6</td>
<td>44.2</td>
</tr>
<tr>
<td>3-4 yrs</td>
<td>3.00</td>
<td>61199</td>
<td>15.1</td>
<td>15.1</td>
<td>59.3</td>
</tr>
<tr>
<td>4-5 yrs</td>
<td>4.00</td>
<td>43678</td>
<td>10.8</td>
<td>10.8</td>
<td>70.1</td>
</tr>
<tr>
<td>5-6 yrs</td>
<td>5.00</td>
<td>32528</td>
<td>8.0</td>
<td>8.0</td>
<td>78.1</td>
</tr>
<tr>
<td>6-7 yrs</td>
<td>6.00</td>
<td>25330</td>
<td>6.3</td>
<td>6.3</td>
<td>84.4</td>
</tr>
<tr>
<td>7-8 yrs</td>
<td>7.00</td>
<td>19427</td>
<td>4.8</td>
<td>4.8</td>
<td>89.2</td>
</tr>
<tr>
<td>8-9 yrs</td>
<td>8.00</td>
<td>14263</td>
<td>3.5</td>
<td>3.5</td>
<td>92.7</td>
</tr>
<tr>
<td>9-10 yrs</td>
<td>9.00</td>
<td>10312</td>
<td>2.6</td>
<td>2.6</td>
<td>95.3</td>
</tr>
<tr>
<td>10-11 yrs</td>
<td>10.00</td>
<td>7098</td>
<td>1.8</td>
<td>1.8</td>
<td>97.1</td>
</tr>
</tbody>
</table>
NCHILD - number of children

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>776</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
</tr>
<tr>
<td>1.00</td>
<td>172879</td>
<td>42.8</td>
<td>42.8</td>
<td>43.0</td>
</tr>
<tr>
<td>2.00</td>
<td>170260</td>
<td>42.1</td>
<td>42.1</td>
<td>85.1</td>
</tr>
<tr>
<td>3.00</td>
<td>49343</td>
<td>12.2</td>
<td>12.2</td>
<td>97.3</td>
</tr>
<tr>
<td>4.00</td>
<td>8919</td>
<td>2.2</td>
<td>2.2</td>
<td>99.5</td>
</tr>
<tr>
<td>5.00</td>
<td>1771</td>
<td>.4</td>
<td>.4</td>
<td>99.9</td>
</tr>
<tr>
<td>6.00</td>
<td>183</td>
<td>.0</td>
<td>.0</td>
<td>100.0</td>
</tr>
<tr>
<td>7.00</td>
<td>53</td>
<td>.0</td>
<td>.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8.00</td>
<td>72</td>
<td>.0</td>
<td>.0</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>28</td>
<td>.0</td>
<td>.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Total: 404284
Valid cases 404284
Missing cases 0

MAGE1 - mothers age since first birth

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.00</td>
<td>2</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>16.00</td>
<td>347</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>17.00</td>
<td>1402</td>
<td>.3</td>
<td>.3</td>
<td>.4</td>
</tr>
<tr>
<td>18.00</td>
<td>3491</td>
<td>.9</td>
<td>.9</td>
<td>1.3</td>
</tr>
<tr>
<td>19.00</td>
<td>5663</td>
<td>1.4</td>
<td>1.4</td>
<td>2.7</td>
</tr>
<tr>
<td>20.00</td>
<td>8354</td>
<td>2.1</td>
<td>2.1</td>
<td>4.8</td>
</tr>
<tr>
<td>21.00</td>
<td>11287</td>
<td>2.8</td>
<td>2.8</td>
<td>7.6</td>
</tr>
<tr>
<td>22.00</td>
<td>14908</td>
<td>3.7</td>
<td>3.7</td>
<td>11.2</td>
</tr>
<tr>
<td>23.00</td>
<td>18847</td>
<td>4.7</td>
<td>4.7</td>
<td>15.9</td>
</tr>
<tr>
<td>24.00</td>
<td>22644</td>
<td>5.6</td>
<td>5.6</td>
<td>21.5</td>
</tr>
<tr>
<td>25.00</td>
<td>26212</td>
<td>6.5</td>
<td>6.5</td>
<td>28.0</td>
</tr>
<tr>
<td>26.00</td>
<td>29818</td>
<td>7.4</td>
<td>7.4</td>
<td>35.4</td>
</tr>
<tr>
<td>27.00</td>
<td>33389</td>
<td>8.3</td>
<td>8.3</td>
<td>43.6</td>
</tr>
<tr>
<td>28.00</td>
<td>36417</td>
<td>9.0</td>
<td>9.0</td>
<td>52.6</td>
</tr>
<tr>
<td>29.00</td>
<td>39203</td>
<td>9.7</td>
<td>9.7</td>
<td>62.3</td>
</tr>
<tr>
<td>30.00</td>
<td>41785</td>
<td>10.3</td>
<td>10.3</td>
<td>72.7</td>
</tr>
<tr>
<td>31.00</td>
<td>43896</td>
<td>10.9</td>
<td>10.9</td>
<td>83.5</td>
</tr>
<tr>
<td>32.00</td>
<td>45457</td>
<td>11.2</td>
<td>11.2</td>
<td>94.8</td>
</tr>
<tr>
<td>33.00</td>
<td>21162</td>
<td>5.2</td>
<td>5.2</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Total: 404284
Valid cases 404284
Missing cases 0

BTHCLOSE

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>327844</td>
<td>81.1</td>
<td>81.1</td>
<td>81.1</td>
</tr>
<tr>
<td>1.00</td>
<td>76440</td>
<td>18.9</td>
<td>18.9</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Total: 404284
Valid cases 404284
Missing cases 0

PARTJOB - partner in a job

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>no partner/missing</td>
<td>-9.00</td>
<td>310621</td>
<td>78.6</td>
<td>78.6</td>
</tr>
<tr>
<td>.00</td>
<td>11054</td>
<td>2.7</td>
<td>2.7</td>
<td>79.6</td>
</tr>
<tr>
<td>yes</td>
<td>82609</td>
<td>20.4</td>
<td>20.4</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Total: 404284
Valid cases 404284
Missing cases 0
Monthly Unemployment Rate

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.90</td>
<td>16</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>2.00</td>
<td>43</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>2.10</td>
<td>136</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>2.20</td>
<td>46</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.1</td>
</tr>
<tr>
<td>2.30</td>
<td>52</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.1</td>
</tr>
<tr>
<td>2.40</td>
<td>56</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.1</td>
</tr>
<tr>
<td>2.50</td>
<td>63</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.1</td>
</tr>
<tr>
<td>2.70</td>
<td>68</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.1</td>
</tr>
<tr>
<td>2.90</td>
<td>74</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.2</td>
</tr>
<tr>
<td>3.00</td>
<td>90</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.2</td>
</tr>
<tr>
<td>3.20</td>
<td>97</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.2</td>
</tr>
<tr>
<td>3.30</td>
<td>106</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.2</td>
</tr>
<tr>
<td>3.40</td>
<td>118</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.2</td>
</tr>
<tr>
<td>3.60</td>
<td>130</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.3</td>
</tr>
<tr>
<td>3.80</td>
<td>140</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.3</td>
</tr>
<tr>
<td>3.90</td>
<td>3200</td>
<td>.8</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>5002</td>
<td>1.2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>3986</td>
<td>1.0</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.20</td>
<td>5343</td>
<td>1.3</td>
<td>4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.30</td>
<td>5248</td>
<td>1.3</td>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.40</td>
<td>5273</td>
<td>1.3</td>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>1457</td>
<td>.4</td>
<td>7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.60</td>
<td>3202</td>
<td>.8</td>
<td>8.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.70</td>
<td>1184</td>
<td>.3</td>
<td>8.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>1204</td>
<td>.3</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.30</td>
<td>1237</td>
<td>.3</td>
<td>11.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.60</td>
<td>8734</td>
<td>2.2</td>
<td>11.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.70</td>
<td>22437</td>
<td>5.5</td>
<td>17.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.80</td>
<td>7482</td>
<td>1.9</td>
<td>18.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.90</td>
<td>12431</td>
<td>3.1</td>
<td>21.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>3805</td>
<td>.9</td>
<td>22.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.10</td>
<td>3655</td>
<td>.9</td>
<td>23.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.20</td>
<td>7460</td>
<td>1.8</td>
<td>25.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.30</td>
<td>3624</td>
<td>.9</td>
<td>26.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.40</td>
<td>4909</td>
<td>1.2</td>
<td>27.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.50</td>
<td>7415</td>
<td>1.8</td>
<td>29.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.70</td>
<td>8732</td>
<td>2.2</td>
<td>31.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.80</td>
<td>3565</td>
<td>.9</td>
<td>32.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>8734</td>
<td>2.2</td>
<td>34.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.20</td>
<td>4907</td>
<td>1.2</td>
<td>36.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.40</td>
<td>7349</td>
<td>1.8</td>
<td>37.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.50</td>
<td>4913</td>
<td>1.2</td>
<td>39.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.70</td>
<td>8752</td>
<td>2.2</td>
<td>41.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.80</td>
<td>3479</td>
<td>.9</td>
<td>42.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.90</td>
<td>7299</td>
<td>1.8</td>
<td>43.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>1477</td>
<td>.4</td>
<td>44.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.10</td>
<td>8773</td>
<td>2.2</td>
<td>46.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.30</td>
<td>4955</td>
<td>1.2</td>
<td>47.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.40</td>
<td>3082</td>
<td>.8</td>
<td>48.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.50</td>
<td>4966</td>
<td>1.2</td>
<td>49.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.60</td>
<td>6425</td>
<td>1.6</td>
<td>51.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.70</td>
<td>3965</td>
<td>1.0</td>
<td>52.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.80</td>
<td>2000</td>
<td>.5</td>
<td>52.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.90</td>
<td>5236</td>
<td>1.3</td>
<td>54.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>1777</td>
<td>.4</td>
<td>54.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.10</td>
<td>6754</td>
<td>1.7</td>
<td>56.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.20</td>
<td>5066</td>
<td>1.3</td>
<td>57.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.30</td>
<td>3569</td>
<td>.9</td>
<td>58.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.40</td>
<td>5116</td>
<td>1.3</td>
<td>59.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.60</td>
<td>5132</td>
<td>1.3</td>
<td>60.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.70</td>
<td>1877</td>
<td>.5</td>
<td>61.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.80</td>
<td>5163</td>
<td>1.3</td>
<td>62.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.90</td>
<td>1925</td>
<td>.5</td>
<td>63.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>4027</td>
<td>1.3</td>
<td>64.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10</td>
<td>5188</td>
<td>1.3</td>
<td>65.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.20</td>
<td>4024</td>
<td>1.0</td>
<td>66.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.30</td>
<td>5238</td>
<td>1.3</td>
<td>67.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.40</td>
<td>2074</td>
<td>.5</td>
<td>68.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.50</td>
<td>14199</td>
<td>3.6</td>
<td>71.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.60</td>
<td>21508</td>
<td>5.3</td>
<td>77.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.70</td>
<td>10318</td>
<td>2.6</td>
<td>79.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.80</td>
<td>5082</td>
<td>1.3</td>
<td>81.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.90</td>
<td>29707</td>
<td>7.3</td>
<td>88.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.00</td>
<td>11563</td>
<td>2.9</td>
<td>91.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.10</td>
<td>14788</td>
<td>3.7</td>
<td>94.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.20</td>
<td>20897</td>
<td>5.2</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 404284 100.0 100.0

Valid cases 404284 Missing cases 0

NCDS Data Note - Employment and Childbearing: Appendix3 - Page 30
NONE

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>320987</td>
<td>79.4</td>
<td>81.1</td>
<td>81.1</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>74618</td>
<td>18.5</td>
<td>18.9</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>8679</td>
<td>2.1</td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 395605 Missing cases 8679

SOME

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>304936</td>
<td>75.4</td>
<td>77.1</td>
<td>77.1</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>90669</td>
<td>22.4</td>
<td>22.9</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>8679</td>
<td>2.1</td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 395605 Missing cases 8679

OLEV

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>253030</td>
<td>62.6</td>
<td>64.0</td>
<td>64.0</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>142575</td>
<td>35.3</td>
<td>36.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>8679</td>
<td>2.1</td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 395605 Missing cases 8679

ALEV

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>326834</td>
<td>80.8</td>
<td>82.6</td>
<td>82.6</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>68771</td>
<td>17.0</td>
<td>17.4</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>8679</td>
<td>2.1</td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 395605 Missing cases 8679

DEGREE

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>353402</td>
<td>87.4</td>
<td>89.3</td>
<td>89.3</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>42203</td>
<td>10.4</td>
<td>10.7</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>8679</td>
<td>2.1</td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 395605 Missing cases 8679

HIQUAL

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8679</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>74618</td>
<td>18.5</td>
<td>18.5</td>
<td>20.6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>90669</td>
<td>22.4</td>
<td>22.4</td>
<td>43.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>142575</td>
<td>35.3</td>
<td>35.3</td>
<td>78.3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>26568</td>
<td>6.6</td>
<td>6.6</td>
<td>84.9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>42203</td>
<td>10.4</td>
<td>10.4</td>
<td>95.3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>18972</td>
<td>4.7</td>
<td>4.7</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0

WORKATT1

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WORKATT2

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>5138</td>
<td>1.3</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>76337</td>
<td>18.9</td>
<td>21.9</td>
<td>23.4</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>51569</td>
<td>12.8</td>
<td>14.8</td>
<td>38.2</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>204158</td>
<td>50.5</td>
<td>58.7</td>
<td>96.9</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>10824</td>
<td>2.7</td>
<td>3.1</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>56258</td>
<td>13.9</td>
<td></td>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 348026 Missing cases 56258

MATLEAV1

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>283801</td>
<td>70.2</td>
<td>70.2</td>
<td>70.2</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>120483</td>
<td>29.8</td>
<td>29.8</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0

PROFF

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>394985</td>
<td>97.7</td>
<td>97.7</td>
<td>97.7</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>9299</td>
<td>2.3</td>
<td>2.3</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0

INTERMED

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>356108</td>
<td>88.1</td>
<td>88.1</td>
<td>88.1</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>48176</td>
<td>11.9</td>
<td>11.9</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0

NONMAN

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>380868</td>
<td>94.2</td>
<td>94.2</td>
<td>94.2</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>23416</td>
<td>5.8</td>
<td>5.8</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0
<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>272136</td>
<td>67.3</td>
<td>67.3</td>
<td>67.3</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>132148</td>
<td>32.7</td>
<td>32.7</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0

- -

SSKILL

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>359052</td>
<td>88.8</td>
<td>88.8</td>
<td>88.8</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>45232</td>
<td>11.2</td>
<td>11.2</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0

- -

UNSKILL

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>386675</td>
<td>95.6</td>
<td>95.6</td>
<td>95.6</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>17609</td>
<td>4.4</td>
<td>4.4</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0

- -

CLASSMIS

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>275880</td>
<td>68.2</td>
<td>68.2</td>
<td>68.2</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>128404</td>
<td>31.8</td>
<td>31.8</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0

- -

MAGEBTH1 mothers age at first birth lt 20 yrs

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>305096</td>
<td>75.5</td>
<td>75.5</td>
<td>75.5</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>99188</td>
<td>24.5</td>
<td>24.5</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0

- -

MAGEBTH2 mothers age at first birth 20-24 yrs

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>191339</td>
<td>47.3</td>
<td>47.3</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>129245</td>
<td>52.7</td>
<td>52.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0

- -

MAGEBTH3 mothers age at first birth 25-29 yrs

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>305096</td>
<td>75.5</td>
<td>75.5</td>
<td>75.5</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>99188</td>
<td>24.5</td>
<td>24.5</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0

- -
MAGEBTH4

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>391284</td>
<td>96.8</td>
<td>96.8</td>
<td>96.8</td>
</tr>
<tr>
<td>1.00</td>
<td>13000</td>
<td>3.2</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 404284 Missing cases 0

OWNOCBB

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>195216</td>
<td>48.3</td>
<td>52.8</td>
<td>52.8</td>
</tr>
<tr>
<td>1.00</td>
<td>174690</td>
<td>43.2</td>
<td>47.2</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>34378</td>
<td>8.5</td>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 369906 Missing cases 34378

SOCBB

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>307900</td>
<td>76.2</td>
<td>83.2</td>
<td>83.2</td>
</tr>
<tr>
<td>1.00</td>
<td>62006</td>
<td>15.3</td>
<td>16.8</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>34378</td>
<td>8.5</td>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 369906 Missing cases 34378

RENTBB

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>304885</td>
<td>75.4</td>
<td>82.4</td>
<td>82.4</td>
</tr>
<tr>
<td>1.00</td>
<td>65021</td>
<td>16.1</td>
<td>17.6</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>34378</td>
<td>8.5</td>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 369906 Missing cases 34378

PARBB

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>301717</td>
<td>74.6</td>
<td>81.6</td>
<td>81.6</td>
</tr>
<tr>
<td>1.00</td>
<td>68189</td>
<td>16.9</td>
<td>18.4</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>34378</td>
<td>8.5</td>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 369906 Missing cases 34378

OWNOCATB

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SOCATB

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>295271</td>
<td>73.0</td>
<td>79.3</td>
<td>79.3</td>
</tr>
<tr>
<td>1.00</td>
<td>76916</td>
<td>19.0</td>
<td>20.7</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>32097</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 372187
Missing cases 32097

RENTATB

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>311585</td>
<td>77.1</td>
<td>83.7</td>
<td>83.7</td>
</tr>
<tr>
<td>1.00</td>
<td>60602</td>
<td>15.0</td>
<td>16.3</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>32097</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 372187
Missing cases 32097

PARATB

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>323105</td>
<td>79.9</td>
<td>86.8</td>
<td>86.8</td>
</tr>
<tr>
<td>1.00</td>
<td>49082</td>
<td>12.1</td>
<td>13.2</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>32097</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 372187
Missing cases 32097

OWNOCAB

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>180802</td>
<td>44.7</td>
<td>48.6</td>
<td>48.6</td>
</tr>
<tr>
<td>1.00</td>
<td>191578</td>
<td>47.4</td>
<td>51.4</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>31904</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 372380
Missing cases 31904

SOCAB

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>283549</td>
<td>70.1</td>
<td>76.1</td>
<td>76.1</td>
</tr>
<tr>
<td>1.00</td>
<td>88831</td>
<td>22.0</td>
<td>23.9</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>31904</td>
<td>7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 372380
Missing cases 31904

RENTAB

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>Frequency</td>
<td>Percent</td>
<td>Valid</td>
<td>Cum</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>.00</td>
<td>335699</td>
<td>83.0</td>
<td>90.1</td>
<td>90.1</td>
</tr>
<tr>
<td>1.00</td>
<td>36681</td>
<td>9.1</td>
<td>9.9</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>31904</td>
<td>7.9</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Total</td>
<td>404284</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
Part 4: Frequencies from first birth to first job

YEAR

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>242</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>32246</td>
<td>19.3</td>
<td>19.3</td>
<td>19.4</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>26064</td>
<td>15.6</td>
<td>15.6</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>22373</td>
<td>13.4</td>
<td>13.4</td>
<td>48.4</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>18620</td>
<td>11.1</td>
<td>11.1</td>
<td>59.5</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>15333</td>
<td>9.2</td>
<td>9.2</td>
<td>68.7</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>12703</td>
<td>7.6</td>
<td>7.6</td>
<td>76.3</td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>10281</td>
<td>6.1</td>
<td>6.1</td>
<td>82.4</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>7913</td>
<td>4.7</td>
<td>4.7</td>
<td>87.1</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>6133</td>
<td>3.7</td>
<td>3.7</td>
<td>90.8</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>4696</td>
<td>2.8</td>
<td>2.8</td>
<td>93.6</td>
<td></td>
</tr>
<tr>
<td>11.00</td>
<td>3657</td>
<td>2.2</td>
<td>2.2</td>
<td>95.8</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>2686</td>
<td>1.6</td>
<td>1.6</td>
<td>97.4</td>
<td></td>
</tr>
<tr>
<td>13.00</td>
<td>1868</td>
<td>1.1</td>
<td>1.1</td>
<td>98.5</td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>1283</td>
<td>.8</td>
<td>.8</td>
<td>99.3</td>
<td></td>
</tr>
<tr>
<td>15.00</td>
<td>746</td>
<td>.4</td>
<td>.4</td>
<td>99.7</td>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td>352</td>
<td>.2</td>
<td>.2</td>
<td>99.9</td>
<td></td>
</tr>
<tr>
<td>17.00</td>
<td>141</td>
<td>.1</td>
<td>.1</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 167317 Missing cases 0

MARHIST currently married

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>.00</td>
<td>57901</td>
<td>34.6</td>
<td>35.6</td>
<td>35.6</td>
</tr>
<tr>
<td>yes</td>
<td>1.00</td>
<td>104608</td>
<td>62.5</td>
<td>64.4</td>
<td>100.0</td>
</tr>
<tr>
<td>~9.00</td>
<td>4808</td>
<td>2.9</td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 162509 Missing cases 4808

COHABHIS currently cohabiting

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>.00</td>
<td>119699</td>
<td>71.5</td>
<td>73.4</td>
<td>73.4</td>
</tr>
<tr>
<td>yes</td>
<td>1.00</td>
<td>43411</td>
<td>25.9</td>
<td>26.6</td>
<td>100.0</td>
</tr>
<tr>
<td>~9.00</td>
<td>4207</td>
<td>2.5</td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 163110 Missing cases 4207

PARTHIS in partnership status unknown

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>.00</td>
<td>162432</td>
<td>97.1</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>~9.00</td>
<td>4885</td>
<td>2.9</td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 162432 Missing cases 4885

AGEECH age of youngest child

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>no child</td>
<td>.00</td>
<td>239</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td><1 yr</td>
<td>1.00</td>
<td>56147</td>
<td>33.6</td>
<td>33.6</td>
<td>33.7</td>
</tr>
<tr>
<td>1-2 yrs</td>
<td>2.00</td>
<td>42447</td>
<td>25.4</td>
<td>25.4</td>
<td>59.1</td>
</tr>
<tr>
<td>2-3 yrs</td>
<td>3.00</td>
<td>26375</td>
<td>15.8</td>
<td>15.8</td>
<td>74.8</td>
</tr>
<tr>
<td>3-4 yrs</td>
<td>4.00</td>
<td>15584</td>
<td>9.3</td>
<td>9.3</td>
<td>84.1</td>
</tr>
<tr>
<td>4-5 yrs</td>
<td>5.00</td>
<td>9798</td>
<td>5.9</td>
<td>5.9</td>
<td>90.0</td>
</tr>
<tr>
<td>5-6 yrs</td>
<td>6.00</td>
<td>6375</td>
<td>3.8</td>
<td>3.8</td>
<td>93.8</td>
</tr>
<tr>
<td>6-7 yrs</td>
<td>7.00</td>
<td>3859</td>
<td>2.3</td>
<td>2.3</td>
<td>96.1</td>
</tr>
<tr>
<td>7-8 yrs</td>
<td>8.00</td>
<td>2412</td>
<td>1.4</td>
<td>1.4</td>
<td>97.6</td>
</tr>
<tr>
<td>8-9 yrs</td>
<td>9.00</td>
<td>1646</td>
<td>1.0</td>
<td>1.0</td>
<td>98.5</td>
</tr>
<tr>
<td>9-10 yrs</td>
<td>10.00</td>
<td>1027</td>
<td>.6</td>
<td>.6</td>
<td>99.2</td>
</tr>
</tbody>
</table>

NCDS Data Note - Employment and Childbearing: Appendix3 - Page 38
<table>
<thead>
<tr>
<th>Age Group</th>
<th>Average Age</th>
<th>Valid Cases</th>
<th>Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-11 yrs</td>
<td>11.00</td>
<td>660</td>
<td>.4</td>
<td>99.6</td>
</tr>
<tr>
<td>11-12 yrs</td>
<td>12.00</td>
<td>423</td>
<td>.3</td>
<td>99.8</td>
</tr>
<tr>
<td>12-13 yrs</td>
<td>13.00</td>
<td>199</td>
<td>.1</td>
<td>99.9</td>
</tr>
<tr>
<td>13-14 yrs</td>
<td>14.00</td>
<td>80</td>
<td>.0</td>
<td>100.0</td>
</tr>
<tr>
<td>14-15 yrs</td>
<td>15.00</td>
<td>39</td>
<td>.0</td>
<td>100.0</td>
</tr>
<tr>
<td>15-16 yrs</td>
<td>16.00</td>
<td>7</td>
<td>.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

NCHILD

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>239</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>1.00</td>
<td>82773</td>
<td>49.5</td>
<td>49.5</td>
</tr>
<tr>
<td>2.00</td>
<td>61025</td>
<td>36.5</td>
<td>86.1</td>
</tr>
<tr>
<td>3.00</td>
<td>18429</td>
<td>11.0</td>
<td>97.1</td>
</tr>
<tr>
<td>4.00</td>
<td>3780</td>
<td>.2</td>
<td>99.4</td>
</tr>
<tr>
<td>5.00</td>
<td>823</td>
<td>.1</td>
<td>99.9</td>
</tr>
<tr>
<td>6.00</td>
<td>136</td>
<td>.0</td>
<td>100.0</td>
</tr>
<tr>
<td>7.00</td>
<td>38</td>
<td>.0</td>
<td>100.0</td>
</tr>
<tr>
<td>8.00</td>
<td>52</td>
<td>.0</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>22</td>
<td>.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

MAGE1

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.00</td>
<td>2</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>16.00</td>
<td>331</td>
<td>.2</td>
<td>.2</td>
</tr>
<tr>
<td>17.00</td>
<td>1187</td>
<td>.7</td>
<td>.9</td>
</tr>
<tr>
<td>18.00</td>
<td>2745</td>
<td>1.6</td>
<td>2.5</td>
</tr>
<tr>
<td>19.00</td>
<td>4242</td>
<td>2.5</td>
<td>5.1</td>
</tr>
<tr>
<td>20.00</td>
<td>5801</td>
<td>3.5</td>
<td>8.6</td>
</tr>
<tr>
<td>21.00</td>
<td>7453</td>
<td>4.5</td>
<td>13.0</td>
</tr>
<tr>
<td>22.00</td>
<td>9409</td>
<td>5.6</td>
<td>18.6</td>
</tr>
<tr>
<td>23.00</td>
<td>11337</td>
<td>6.8</td>
<td>25.4</td>
</tr>
<tr>
<td>24.00</td>
<td>12792</td>
<td>7.6</td>
<td>33.1</td>
</tr>
<tr>
<td>25.00</td>
<td>13981</td>
<td>8.4</td>
<td>41.4</td>
</tr>
<tr>
<td>26.00</td>
<td>15107</td>
<td>9.0</td>
<td>50.4</td>
</tr>
<tr>
<td>27.00</td>
<td>15329</td>
<td>9.2</td>
<td>59.6</td>
</tr>
<tr>
<td>28.00</td>
<td>14684</td>
<td>8.8</td>
<td>68.4</td>
</tr>
<tr>
<td>29.00</td>
<td>13763</td>
<td>8.2</td>
<td>76.6</td>
</tr>
<tr>
<td>30.00</td>
<td>12760</td>
<td>7.6</td>
<td>84.2</td>
</tr>
<tr>
<td>31.00</td>
<td>11737</td>
<td>7.0</td>
<td>91.2</td>
</tr>
<tr>
<td>32.00</td>
<td>10429</td>
<td>6.2</td>
<td>97.5</td>
</tr>
<tr>
<td>33.00</td>
<td>4228</td>
<td>2.5</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

BTHCLOSE

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>122005</td>
<td>72.9</td>
<td>72.9</td>
</tr>
<tr>
<td>1.00</td>
<td>45312</td>
<td>27.1</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

PARTJOB

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>no partner/missing</td>
<td>129146</td>
<td>77.2</td>
<td>77.2</td>
</tr>
<tr>
<td>no</td>
<td>5446</td>
<td>3.3</td>
<td>80.4</td>
</tr>
<tr>
<td>yes</td>
<td>32725</td>
<td>19.6</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases: 167317
Missing cases: 0
Monthly Unemployment Rate

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.90</td>
<td>16</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>2.00</td>
<td>43</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>2.10</td>
<td>133</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>2.20</td>
<td>43</td>
<td>.0</td>
<td>.0</td>
<td>.1</td>
</tr>
<tr>
<td>2.30</td>
<td>48</td>
<td>.0</td>
<td>.0</td>
<td>.2</td>
</tr>
<tr>
<td>2.40</td>
<td>50</td>
<td>.0</td>
<td>.0</td>
<td>.2</td>
</tr>
<tr>
<td>2.50</td>
<td>55</td>
<td>.0</td>
<td>.0</td>
<td>.2</td>
</tr>
<tr>
<td>2.70</td>
<td>59</td>
<td>.0</td>
<td>.0</td>
<td>.3</td>
</tr>
<tr>
<td>2.90</td>
<td>64</td>
<td>.0</td>
<td>.0</td>
<td>.3</td>
</tr>
<tr>
<td>3.00</td>
<td>79</td>
<td>.0</td>
<td>.0</td>
<td>.4</td>
</tr>
<tr>
<td>3.20</td>
<td>83</td>
<td>.0</td>
<td>.0</td>
<td>.4</td>
</tr>
<tr>
<td>3.30</td>
<td>90</td>
<td>.1</td>
<td>.1</td>
<td>.5</td>
</tr>
<tr>
<td>3.40</td>
<td>100</td>
<td>.1</td>
<td>.1</td>
<td>.5</td>
</tr>
<tr>
<td>3.60</td>
<td>109</td>
<td>.1</td>
<td>.1</td>
<td>.6</td>
</tr>
<tr>
<td>3.80</td>
<td>119</td>
<td>.1</td>
<td>.1</td>
<td>.7</td>
</tr>
<tr>
<td>4.00</td>
<td>2153</td>
<td>1.3</td>
<td>1.3</td>
<td>1.9</td>
</tr>
<tr>
<td>4.10</td>
<td>2724</td>
<td>1.6</td>
<td>1.6</td>
<td>5.6</td>
</tr>
<tr>
<td>4.20</td>
<td>3723</td>
<td>2.2</td>
<td>2.2</td>
<td>7.8</td>
</tr>
<tr>
<td>4.30</td>
<td>3892</td>
<td>2.3</td>
<td>2.3</td>
<td>10.1</td>
</tr>
<tr>
<td>4.40</td>
<td>3705</td>
<td>2.2</td>
<td>2.2</td>
<td>12.3</td>
</tr>
<tr>
<td>4.50</td>
<td>1091</td>
<td>.7</td>
<td>.7</td>
<td>13.0</td>
</tr>
<tr>
<td>4.60</td>
<td>2252</td>
<td>1.3</td>
<td>1.3</td>
<td>14.3</td>
</tr>
<tr>
<td>4.70</td>
<td>753</td>
<td>.5</td>
<td>.5</td>
<td>14.8</td>
</tr>
<tr>
<td>5.00</td>
<td>751</td>
<td>.4</td>
<td>.4</td>
<td>15.2</td>
</tr>
<tr>
<td>5.30</td>
<td>775</td>
<td>.5</td>
<td>.5</td>
<td>15.7</td>
</tr>
<tr>
<td>5.60</td>
<td>2621</td>
<td>1.6</td>
<td>1.6</td>
<td>17.2</td>
</tr>
<tr>
<td>5.70</td>
<td>5510</td>
<td>3.3</td>
<td>3.3</td>
<td>20.5</td>
</tr>
<tr>
<td>5.80</td>
<td>1841</td>
<td>1.1</td>
<td>1.1</td>
<td>21.6</td>
</tr>
<tr>
<td>5.90</td>
<td>3639</td>
<td>2.2</td>
<td>2.2</td>
<td>23.8</td>
</tr>
<tr>
<td>6.00</td>
<td>855</td>
<td>.5</td>
<td>.5</td>
<td>24.3</td>
</tr>
<tr>
<td>6.10</td>
<td>987</td>
<td>.6</td>
<td>.6</td>
<td>24.9</td>
</tr>
<tr>
<td>6.20</td>
<td>1829</td>
<td>1.1</td>
<td>1.1</td>
<td>26.0</td>
</tr>
<tr>
<td>6.30</td>
<td>996</td>
<td>.6</td>
<td>.6</td>
<td>26.6</td>
</tr>
<tr>
<td>6.40</td>
<td>1812</td>
<td>1.1</td>
<td>1.1</td>
<td>27.7</td>
</tr>
<tr>
<td>6.50</td>
<td>1833</td>
<td>1.1</td>
<td>1.1</td>
<td>28.8</td>
</tr>
<tr>
<td>6.70</td>
<td>2666</td>
<td>1.6</td>
<td>1.6</td>
<td>30.4</td>
</tr>
<tr>
<td>6.80</td>
<td>1020</td>
<td>.6</td>
<td>.6</td>
<td>31.0</td>
</tr>
<tr>
<td>7.00</td>
<td>2691</td>
<td>1.6</td>
<td>1.6</td>
<td>32.6</td>
</tr>
<tr>
<td>7.20</td>
<td>1899</td>
<td>1.1</td>
<td>1.1</td>
<td>33.7</td>
</tr>
<tr>
<td>7.40</td>
<td>1837</td>
<td>1.1</td>
<td>1.1</td>
<td>34.8</td>
</tr>
<tr>
<td>7.50</td>
<td>1934</td>
<td>1.2</td>
<td>1.2</td>
<td>36.0</td>
</tr>
<tr>
<td>7.70</td>
<td>2740</td>
<td>1.6</td>
<td>1.6</td>
<td>37.6</td>
</tr>
<tr>
<td>7.80</td>
<td>1072</td>
<td>.6</td>
<td>.6</td>
<td>38.3</td>
</tr>
<tr>
<td>7.90</td>
<td>1848</td>
<td>1.1</td>
<td>1.1</td>
<td>39.4</td>
</tr>
<tr>
<td>8.00</td>
<td>911</td>
<td>.5</td>
<td>.5</td>
<td>39.9</td>
</tr>
<tr>
<td>8.10</td>
<td>2747</td>
<td>1.6</td>
<td>1.6</td>
<td>41.6</td>
</tr>
<tr>
<td>8.30</td>
<td>2001</td>
<td>1.2</td>
<td>1.2</td>
<td>42.7</td>
</tr>
<tr>
<td>8.40</td>
<td>596</td>
<td>.4</td>
<td>.4</td>
<td>43.1</td>
</tr>
<tr>
<td>8.50</td>
<td>2031</td>
<td>1.2</td>
<td>1.2</td>
<td>44.3</td>
</tr>
<tr>
<td>8.60</td>
<td>2349</td>
<td>1.4</td>
<td>1.4</td>
<td>45.7</td>
</tr>
<tr>
<td>8.70</td>
<td>1226</td>
<td>.7</td>
<td>.7</td>
<td>46.5</td>
</tr>
<tr>
<td>8.80</td>
<td>1030</td>
<td>.6</td>
<td>.6</td>
<td>47.1</td>
</tr>
<tr>
<td>8.90</td>
<td>2136</td>
<td>1.3</td>
<td>1.3</td>
<td>48.3</td>
</tr>
<tr>
<td>9.00</td>
<td>1006</td>
<td>.6</td>
<td>.6</td>
<td>48.9</td>
</tr>
<tr>
<td>9.10</td>
<td>3122</td>
<td>1.9</td>
<td>1.9</td>
<td>50.8</td>
</tr>
<tr>
<td>9.20</td>
<td>2137</td>
<td>1.3</td>
<td>1.3</td>
<td>52.1</td>
</tr>
<tr>
<td>9.30</td>
<td>2055</td>
<td>1.2</td>
<td>1.2</td>
<td>53.3</td>
</tr>
<tr>
<td>9.40</td>
<td>2161</td>
<td>1.3</td>
<td>1.3</td>
<td>54.6</td>
</tr>
<tr>
<td>9.60</td>
<td>2206</td>
<td>1.3</td>
<td>1.3</td>
<td>55.9</td>
</tr>
<tr>
<td>9.70</td>
<td>1064</td>
<td>.6</td>
<td>.6</td>
<td>56.6</td>
</tr>
<tr>
<td>9.80</td>
<td>2226</td>
<td>1.3</td>
<td>1.3</td>
<td>57.9</td>
</tr>
<tr>
<td>9.90</td>
<td>1074</td>
<td>.6</td>
<td>.6</td>
<td>58.5</td>
</tr>
<tr>
<td>10.00</td>
<td>2238</td>
<td>1.3</td>
<td>1.3</td>
<td>59.9</td>
</tr>
<tr>
<td>10.10</td>
<td>2256</td>
<td>1.3</td>
<td>1.3</td>
<td>61.2</td>
</tr>
<tr>
<td>10.20</td>
<td>2232</td>
<td>1.3</td>
<td>1.3</td>
<td>62.6</td>
</tr>
<tr>
<td>10.30</td>
<td>2286</td>
<td>1.4</td>
<td>1.4</td>
<td>63.9</td>
</tr>
<tr>
<td>10.40</td>
<td>1138</td>
<td>.7</td>
<td>.7</td>
<td>64.6</td>
</tr>
<tr>
<td>10.50</td>
<td>7071</td>
<td>4.2</td>
<td>4.2</td>
<td>68.8</td>
</tr>
<tr>
<td>10.60</td>
<td>10794</td>
<td>6.5</td>
<td>6.5</td>
<td>75.3</td>
</tr>
<tr>
<td>10.70</td>
<td>4863</td>
<td>2.9</td>
<td>2.9</td>
<td>78.2</td>
</tr>
<tr>
<td>10.80</td>
<td>2541</td>
<td>1.5</td>
<td>1.5</td>
<td>79.7</td>
</tr>
<tr>
<td>10.90</td>
<td>14133</td>
<td>8.4</td>
<td>8.4</td>
<td>88.1</td>
</tr>
<tr>
<td>11.00</td>
<td>4989</td>
<td>3.0</td>
<td>3.0</td>
<td>91.1</td>
</tr>
<tr>
<td>11.10</td>
<td>6172</td>
<td>3.7</td>
<td>3.7</td>
<td>94.8</td>
</tr>
<tr>
<td>11.20</td>
<td>8683</td>
<td>5.2</td>
<td>5.2</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 167317 Missing cases 0
NONE

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>126864</td>
<td>75.8</td>
<td>77.5</td>
<td>77.5</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>36880</td>
<td>22.0</td>
<td>22.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>3573</td>
<td>2.1</td>
<td></td>
<td>Missing</td>
<td></td>
</tr>
</tbody>
</table>

Total: 167317

Valid cases 163744
Missing cases 3573

SOME

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>124282</td>
<td>74.3</td>
<td>75.9</td>
<td>75.9</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>39462</td>
<td>23.6</td>
<td>24.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>3573</td>
<td>2.1</td>
<td></td>
<td>Missing</td>
<td></td>
</tr>
</tbody>
</table>

Total: 167317

Valid cases 163744
Missing cases 3573

OLEV

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>106499</td>
<td>63.7</td>
<td>65.0</td>
<td>65.0</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>57245</td>
<td>34.2</td>
<td>35.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>3573</td>
<td>2.1</td>
<td></td>
<td>Missing</td>
<td></td>
</tr>
</tbody>
</table>

Total: 167317

Valid cases 163744
Missing cases 3573

ALEV

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>139392</td>
<td>83.3</td>
<td>85.1</td>
<td>85.1</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>24352</td>
<td>14.6</td>
<td>14.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>3573</td>
<td>2.1</td>
<td></td>
<td>Missing</td>
<td></td>
</tr>
</tbody>
</table>

Total: 167317

Valid cases 163744
Missing cases 3573

DEGREE

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>151422</td>
<td>90.5</td>
<td>92.5</td>
<td>92.5</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>12322</td>
<td>7.4</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>3573</td>
<td>2.1</td>
<td></td>
<td>Missing</td>
<td></td>
</tr>
</tbody>
</table>

Total: 167317

Valid cases 163744
Missing cases 3573

HIQUAL

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3573</td>
<td>2.1</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>36880</td>
<td>22.0</td>
<td>22.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>39462</td>
<td>23.6</td>
<td>23.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>57245</td>
<td>34.2</td>
<td>34.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12030</td>
<td>7.2</td>
<td>7.4</td>
<td>7.4</td>
<td>100.0</td>
</tr>
<tr>
<td>5</td>
<td>12322</td>
<td>7.4</td>
<td>7.4</td>
<td>7.4</td>
<td>96.5</td>
</tr>
<tr>
<td>6</td>
<td>5805</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Total: 167317

Valid cases 167317
Missing cases 0

WORKATT1

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Valid</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NCDS Data Note - Employment and Childbearing: Appendix3 - Page 41
WORKATT2

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1905</td>
<td>1.1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>2.00</td>
<td>29794</td>
<td>17.8</td>
<td>20.9</td>
<td>22.3</td>
</tr>
<tr>
<td>3.00</td>
<td>19812</td>
<td>11.8</td>
<td>13.9</td>
<td>36.2</td>
</tr>
<tr>
<td>4.00</td>
<td>85933</td>
<td>51.4</td>
<td>60.4</td>
<td>96.6</td>
</tr>
<tr>
<td>5.00</td>
<td>4877</td>
<td>2.9</td>
<td>3.4</td>
<td>100.0</td>
</tr>
<tr>
<td>.</td>
<td>24996</td>
<td>14.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 167317 100.0 100.0

Valid cases 142321 Missing cases 24996

MATLEAV1

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>164627</td>
<td>98.4</td>
<td>98.4</td>
</tr>
<tr>
<td>1.00</td>
<td>2690</td>
<td>1.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Total 167317 100.0 100.0

Valid cases 167317 Missing cases 0

PROFF

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>163417</td>
<td>97.7</td>
<td>97.7</td>
<td>97.7</td>
</tr>
<tr>
<td>1.00</td>
<td>3900</td>
<td>2.3</td>
<td>2.3</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Total 167317 100.0 100.0

Valid cases 167317 Missing cases 0

INTERMED

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>148368</td>
<td>88.7</td>
<td>88.7</td>
</tr>
<tr>
<td>1.00</td>
<td>18949</td>
<td>11.3</td>
<td>11.3</td>
</tr>
</tbody>
</table>

Total 167317 100.0 100.0

Valid cases 167317 Missing cases 0

ONMAN

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>157774</td>
<td>94.3</td>
<td>94.3</td>
<td>94.3</td>
</tr>
<tr>
<td>1.00</td>
<td>9543</td>
<td>5.7</td>
<td>5.7</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Total 167317 100.0 100.0

Valid cases 167317 Missing cases 0

SKMAN
<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
<td>113725</td>
<td>68.0</td>
<td>68.0</td>
<td>68.0</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>53592</td>
<td>32.0</td>
<td>32.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 167317 Missing cases 0

SKILL

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
<td>147377</td>
<td>88.1</td>
<td>88.1</td>
<td>88.1</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>19940</td>
<td>11.9</td>
<td>11.9</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 167317 Missing cases 0

UNSKILL

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
<td>159862</td>
<td>95.5</td>
<td>95.5</td>
<td>95.5</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>7455</td>
<td>4.5</td>
<td>4.5</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 167317 Missing cases 0

CLASSMIS

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
<td>113379</td>
<td>67.8</td>
<td>67.8</td>
<td>67.8</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>53938</td>
<td>32.2</td>
<td>32.2</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 167317 Missing cases 0

MAGEBTH1 mothers age at first birth lt 20 yrs

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
<td>125494</td>
<td>75.0</td>
<td>75.0</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>41823</td>
<td>25.0</td>
<td>25.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 167317 Missing cases 0

MAGEBTH2 mothers age at first birth 20-24 yrs

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
<td>88370</td>
<td>52.8</td>
<td>52.8</td>
<td>52.8</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>78947</td>
<td>47.2</td>
<td>47.2</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 167317 Missing cases 0

MAGEBTH3 mothers age at first birth 25-29 yrs

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
<td>126273</td>
<td>75.5</td>
<td>75.5</td>
<td>75.5</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>41044</td>
<td>24.5</td>
<td>24.5</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 167317 Missing cases 0

MAGEBTH4 mothers age at first birth 30+ yrs

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
<td>126273</td>
<td>75.5</td>
<td>75.5</td>
<td>75.5</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>41044</td>
<td>24.5</td>
<td>24.5</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 167317 Missing cases 0

NCDS Data Note - Employment and Childbearing: Appendix3 - Page 44

<table>
<thead>
<tr>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>80334</td>
<td>48.0</td>
<td>53.1</td>
<td>53.1</td>
</tr>
<tr>
<td>1.00</td>
<td>70822</td>
<td>42.3</td>
<td>46.9</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>16161</td>
<td>9.7</td>
<td>Missing</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 151156 Missing cases 16161
<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>118129</td>
<td>70.6</td>
<td>77.6</td>
<td>77.6</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>34178</td>
<td>20.4</td>
<td>22.4</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>15010</td>
<td>9.0</td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Valid cases 152307 Missing cases 15010

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>127769</td>
<td>76.4</td>
<td>83.9</td>
<td>83.9</td>
</tr>
<tr>
<td>1.00</td>
<td>24538</td>
<td>14.7</td>
<td>16.1</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>15010</td>
<td>9.0</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 152307 Missing cases 15010

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>133977</td>
<td>80.1</td>
<td>88.0</td>
<td>88.0</td>
</tr>
<tr>
<td>1.00</td>
<td>18330</td>
<td>11.0</td>
<td>12.0</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>15010</td>
<td>9.0</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 152307 Missing cases 15010

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>75826</td>
<td>45.3</td>
<td>49.7</td>
<td>49.7</td>
</tr>
<tr>
<td>1.00</td>
<td>76653</td>
<td>45.8</td>
<td>50.3</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>14838</td>
<td>8.9</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 152479 Missing cases 14838

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>112937</td>
<td>67.5</td>
<td>74.1</td>
<td>74.1</td>
</tr>
<tr>
<td>1.00</td>
<td>139542</td>
<td>23.6</td>
<td>25.9</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>14838</td>
<td>8.9</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 152479 Missing cases 14838

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>129201</td>
<td>77.2</td>
<td>84.7</td>
<td>84.7</td>
</tr>
<tr>
<td>1.00</td>
<td>23278</td>
<td>13.9</td>
<td>15.3</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>14838</td>
<td>8.9</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Valid cases 152479 Missing cases 14838

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Valid Percent</th>
<th>Cum Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>139473</td>
<td>83.4</td>
<td>91.5</td>
<td>91.5</td>
</tr>
<tr>
<td>1.00</td>
<td>13006</td>
<td>7.8</td>
<td>8.5</td>
<td>100.0</td>
</tr>
<tr>
<td>9.00</td>
<td>14838</td>
<td>8.9</td>
<td>Missing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>167317</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
PARTED

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49972</td>
<td>29.9</td>
<td>29.9</td>
<td>29.9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>54828</td>
<td>32.8</td>
<td>32.8</td>
<td>62.6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10326</td>
<td>6.2</td>
<td>6.2</td>
<td>68.8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9475</td>
<td>5.7</td>
<td>5.7</td>
<td>74.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2246</td>
<td>1.3</td>
<td>1.3</td>
<td>75.8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11312</td>
<td>6.8</td>
<td>6.8</td>
<td>82.6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3311</td>
<td>2.0</td>
<td>2.0</td>
<td>84.6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>84.6</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>3849</td>
<td>2.3</td>
<td>2.3</td>
<td>86.9</td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>21997</td>
<td>13.1</td>
<td>13.1</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

JOB

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>123028</td>
<td>73.5</td>
<td>96.7</td>
<td>96.7</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>1654</td>
<td>1.0</td>
<td>1.3</td>
<td>98.0</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>2349</td>
<td>1.4</td>
<td>1.8</td>
<td>99.9</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>181</td>
<td>.1</td>
<td>.1</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>40105</td>
<td>24.0</td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PEDLE18

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>38867</td>
<td>23.2</td>
<td>23.8</td>
<td>23.8</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>124601</td>
<td>74.5</td>
<td>76.2</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>3849</td>
<td>2.3</td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PEDGE19

<table>
<thead>
<tr>
<th>Value Label</th>
<th>Value</th>
<th>Frequency</th>
<th>Percent</th>
<th>Percent</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>146598</td>
<td>87.6</td>
<td>89.7</td>
<td>89.7</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>16870</td>
<td>10.1</td>
<td>10.3</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>3849</td>
<td>2.3</td>
<td>Missing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part 5: Job transitions

* freq year to classmis magebth1 to job pedle18 pedge19
fin
select if serial ne '149001L'
select if serial ne '431004Q'
* two cases where I am not sure when their first and only birth stopped
* living with them (c1lliv is wrong)
* recode job (1,2,3=1)
if (sysmis(job)) job=999
do if (job ne 999)
compute entry=0
compute exit=0
* if ((lag(serial) eq serial) and (job ne lag(job)) and (lag(job) eq 0))
 entry=entry+1
if ((lag(serial) eq serial) and (job ne lag(job)) and (lag(job) eq 1))
 exit=exit+1
* if (entry eq 1 and (month ne mthreta)) entry=2
missing values entry exit (99)
end if
* compute trans=0
do if (job eq 1)
if ((lag(serial) eq serial) and (job eq lag(job)) and (lag(job) eq 1))
 trans=1
if ((lag(serial) eq serial) and (job ne lag(job)) and (lag(job) eq 0))
 trans=2
if (trans eq 2 and month ne mthreta) trans=3
if ((lag(serial) eq serial) and (job ne lag(job)) and (lag(job) eq 999))
 trans=4
end if
do if (job eq 0)
if ((lag(serial) eq serial) and (job ne lag(job)) and (lag(job) eq 1))
 trans=5
if ((lag(serial) eq serial) and (job eq lag(job)) and (lag(job) eq 0))
 trans=6
if ((lag(serial) eq serial) and (job ne lag(job)) and (lag(job) eq 999))
 trans=7
end if
do if (job eq 999)
if ((lag(serial) eq serial) and (job ne lag(job)) and (lag(job) eq 1))
 trans=8
if ((lag(serial) eq serial) and (job ne lag(job)) and (lag(job) eq 0))
 trans=9
if ((lag(serial) eq serial) and (job eq lag(job)) and (lag(job) eq 999))
 trans=10
end if
var labels trans 'job transitions'
val labels trans 1 'cont emp' 2 'first entry' 3 'other entry' 4 'poss entry'
 5 'exit' 6 'cont no emp' 7 'poss exit' 8 'poss exit'
 9 'poss entry' 10 'missing' 0 'first month'
freq trans
temp
select if magebthl eq 1
freq trans
Youth Factors and Labour Market Experience in Job Satisfaction

John Bynner
Laura Woods
Neville Butler

October 2002