
Centre for
Longitudinal
Studies

CLS

Centre for Longitudinal Studies
Institute of Education
20 Bedford Way
London WC1H 0AL
Tel: 020 7612 6860
Fax: 020 7612 6880
Email cls@ioe.ac.uk
Web http://www.cls.ioe.ac.uk

Data Note 2008/1

The BCS70 16-year
Arithmetic Dataset

Brian Dodgeon

CLS
Cohort
Studies

A. Introduction

The administration of the BCS70 cohort study was taken over by the Centre for Longitudinal Studies

(formerly the Social Statistics Research Unit, City University) at the end of the 1980s. It had

previously been housed at Bristol University, who had been involved from the inception of the study in

1970.

Unfortunately, after the move from Bristol, it was found that the data for the sweeps up to and

including age 16 were not stored and documented in a systematic way, and certain elements appeared

to be missing, or else hidden on a vast mainframe, with no easy means of location.

One such element was the dataset containing the results of the Arithmetic test at age 16. This was part

of Document C, the rest of which can be viewed at the CLS website at:

http://www.cls.ioe.ac.uk/studies.asp?section=00010002000200070001

The vocabulary test data and two spelling tests results at age 16 have been available for many years,

but the arithmetic, reading and matrices results had not previously been found. However, in 2007 the

arithmetic dataset came to light when the contents of the mainframe were copied to a more easily-

searchable windows environment.

The dataset was not in an easy-to-use format: it did not contain the longitudinal link variable KEY, but

instead had the obsolete individual case identifier from the ‘Youthscan’ era, known as the y-number

(YNUM). Some cases had duplicate y-numbers, indicating the presence of twins, but it was not always

straightforward to interpret which twin was which, in order to match against a look-up table of YNUM

against KEY. The test item results were keyed in a form where one could not tell whether each answer

was right or wrong, and a large number of cases on the dataset had no valid test data at all.

This Data Note explains the process of cleaning up the dataset and deriving variables which facilitate

its analysis.

B. Step-by-Step process of cleaning data

The list of 60 questions which form the arithmetic test appears in Appendix 1. Each question has a

format of five possible answers A-E, only one of which is correct.

The raw dataset contained the individual item responses to the test, each stored in a 5-character string

variable. These were named ‘car1’ to ‘car60’. If the respondent chose answer ‘A’, this would be

coded as an ‘A’ followed by four blanks; if ‘B’ it was coded with ‘B’ in the second position, with

blanks in the other four positions, and so on. If the question was not attempted, the variable was coded

as 5 blank spaces.

Surprisingly, four of these 5-character string variables had been ‘split’ into two variables: a 2-character

string which could contain an ‘A’ or a ‘B’; and a 3-character variable which could contain a ‘C’, ‘D’,

or ‘E’ (or blanks of course). These variables were named car7.1 and car7.2, car23.1 and car23.2,

car39.1 and car39.2, and car55.1 and car55.2. As they occur in a regular sequence, each sixteen

numbers further on from the previous one, it seems likely this split is a consequence of the data being

stored on 80-character punched cards in the original mainframe environment (16x5=80).

So there were 64 variables denoting the item responses, and two variables enabling the cohort members

to be longitudinally linked: ‘yno’ denoting the y-number, and ‘tc’ denoting the ‘twin’ code,

(distinguishing twins, which always have identical y-numbers).

Step 1: Eliminate cases where no data recorded

The dataset contained 6,351 cases, but it was obvious that many cohort members had blanks for every

single question, i.e. they hadn’t attempted the test.

‘Eyeballing’ the data, these cases were not easy to distinguish from those who had attempted only a

minimal number of questions: against expectations, some cohort members had answered one or two

questions late on (e.g. question 40), but none of the earlier ones. So to eliminate those with no data, it

was necessary to test every one of the 64 character strings for consistent blanks (see syntax in

Appendix 2).

2,543 cases contained no data at all, so after deleting these we were left with 3,808 valid cases.

Step 2: Construct y-number & twin code combination, and eliminate duplicates

Concatenating the y-number and twin code variables, we would hope to arrive at a unique case

identifier, which could then be matched against a corresponding key number, enabling longitudinal

linkage.

Although every case had a valid twin code (tc) to go with the y-number, there were 25 y-number/twin-

code combinations which were duplicated in the dataset. One would expect the y-numbers to be

duplicated in the case of twins, where the tc variable resolves which twin is which. Unfortunately, in

each of these 25 cases the tc variable was coded zero.

Looking up the corresponding KEY numbers, it seems unlikely these 25 pairs of cases correspond to

twins (where a twin code might have been erroneously typed): if so, one would expect the KEY

number to end in a 1 or 2, but in all cases they ended in zero, and the ‘CHESno’ part of the KEY

number (i.e. everything except the last digit) is unique for all 25 cases. All 25 were present at the age

16 survey (i.e. they have data for the other age 16 questionnaires), but there is no record of a twin for

any of those KEY numbers.

Eyeballing the dataset, it is clear that the arithmetic scores themselves are not, in general, duplicated:

with two exceptions, there are two distinct sets of results for each pair. One explanation might be that

there was a series of typo errors in entering the y-numbers, and that in each of these 25 pairs of cases,

one of them should have been typed as a different number. But if so, one might expect one of the

adjacent numbers to be missing, but they’re not.

Another possibility is that these 25 cohort members somehow did the arithmetic test twice, and these

duplicates represent two sets of results for the same person. But in the absence of any further evidence,

we are unable to discern which of the two is the more valid. So regrettably, 23 pairs (i.e. 46 records)

had to be discarded. In the case of the other two, the item scores were identical, so we could arbitrarily

delete one member of each pair, and leave the other.

Step 3: Match y-number/twin-code variable against longitudinal link variable KEY

The look-up table derived from the confidential BCS70 Address Database enables a unique match to be

made between ynum_tc and KEY in most cases. However, there are problems: not every y-number is

present in that look-up. It contains 16,396 cases out of the total of 18,736 who have ever been the

subject of an interview at any sweep. As the address database was constructed some years later than

the 16-year survey, those missing from the look-up tend to be cohort members who dropped out of the

study after the 16-year sweep.

There were 90 yno_tc combinations in the dataset which did not appear in that exact form in the look-

up table. Of these, 21 appeared to be cases of twins where (unlike those referred to in Step 2) only one

was present in the dataset. In all 21 cases, there was a match on the y-number in the look-up table, but

the twin code was discrepant. In 6 of these 21 cases there was only one twin present in the look-up

table, so despite the discrepant twin code, it was assumed we had a match, based on the y-number.

In the remaining 15 cases of twins, there were two records with that y-number in the look-up: usually

the twin code in the dataset was zero, but the two twin codes in the look-up table were 1 & 2. In all

these cases a check was carried out on the two corresponding KEY numbers, to see if perhaps only one

of the twins was present at the 16-year survey. This occurred in just one case, so there it could be

reasonably assumed it was this twin who did the arithmetic test, and a match could be made; but in the

other 14 cases, both twins were present at age 16, so (as with those referred to in Step 2) there was no

way of knowing which it was, and those cases had to be discarded.

In the remaining 69 cases, there was not even a corresponding y-number element in the look-up table

(i.e. they were not present in the address database: probably dropping out of the survey after the 16-

year survey), so no match was possible.

So a total of 83 cases had to be discarded, leaving us with a dataset containing 3,677 cases.

Step 4: Check that all cases were present at age 16 survey

Now that each of the remaining 3,677 cases had a unique KEY number, it was possible to do a check

against the ‘presence’ file which indicates which cases were present at which BCS70 sweep.

All but one were found to have been present at the age 16 sweep, which was a reassuring endorsement

that the process of linkage to KEY number was correct.

In the case of the one case not present, a check was performed which showed they were present at

every other sweep up to age 34. So it doesn’t seem to be such an anomalous case: it is plausible that

this cohort member did the arithmetic test, but was absent for the home visit and other tests at age 16.

Step 5: Derive variables summarising results of test

In response to each of the 60 arithmetic questions, the cohort members were asked to choose between 5

possible answers, denoted by alternatives A-D. The variables corresponding to these responses are

‘car1’ to ‘car60’.

These are stored as 5-character strings, with 'A' always appearing as the first character followed by four

blanks, 'B' as the second character followed by three blanks, etc.

It was necessary to derive a corresponding series of 60 variables coded 1 for ‘correct’ and 0 for

‘incorrect’. These were then totalled in a variable ‘mathscore’, and a corresponding variable

‘mathincorrect’ added up the incorrect responses.

Normally only one character had been keyed in each item score, but for about 2-3% of cases, two or

three characters appear, which seems to indicate the student 'hedged their bets'. All these multiple

answers were coded as 'incorrect'.

An additional complication was that, for questions 7, 23, 39 and 55 only, the 5-character string is

broken into two variables, a 2-character string for the 'A' and 'B' possible answers (car7.1 etc) and a 3-

char string for the 'C', 'D' and 'E' responses (e.g. car7.2). This is presumably because, back in 1986

when the test was performed, the data would have been stored on 80-character punched cards.

They were therefore coded as correct if the right answer appeared in the appropriate part and the other

part was blank (e.g. for q7 the correct answer is 'A', so we look for car7.1 to be 'A '. car7.2 can only

contain 'C', 'D' and 'E', and should therefore be blank).

It was noticeable that very few people got correct answers to questions 48-50. This appears to be

caused by the fact that the histogram they're asked to analyse has no labels on the X axis, making it

very difficult to fathom the question!

Appendix 1 The Arithmetic Test Booklet

Appendix 2 Syntax used to derive scores from the BCS70 16-year
arithmetic dataset

* Read in original datafile as found on Unix archive (6,351 cases).

get file='j:\mathsc.sav'.

* Display frequencies of raw item scores.

fre car1 to car60.

* Delete cases where all 60 item scores are blank (i.e. test not attempted at all).

select if (not(car1=' ' and car2=' ' and car3=' ' and car4=' ' and car5=' '
and car6=' ' and car7.1=' ' and car7.2=' ' and car8=' ' and car9=' ' and car10=' '
and car11=' ' and car12=' ' and car13=' ' and car14=' ' and car15=' '
and car16=' ' and car17=' ' and car18=' ' and car19=' ' and car20=' '
and car21=' ' and car22=' ' and car23.1=' ' and car23.2=' ' and car24=' '
and car25=' ' and car26=' ' and car27=' ' and car28=' ' and car29=' '
and car30=' ' and car31=' ' and car32=' ' and car33=' ' and car34=' '
and car35=' ' and car36=' ' and car37=' ' and car38=' ' and car39.1=' '
and car39.2=' ' and car40=' ' and car41=' ' and car42=' ' and car43=' '
and car44=' ' and car45=' ' and car46=' ' and car47=' ' and car48=' '
and car49=' ' and car50=' ' and car51=' ' and car52=' ' and car53=' '
and car54=' ' and car55.1=' ' and car55.2=' ' and car56=' ' and car57=' '
and car58=' ' and car59=' ' and car60=' ')).

execute.

* Derive arithmetic 'total score' variables from the item scores.
* The raw arithmetic variables car1 to car60 are coded with the alphabetic digit (A-E) of the
* alternative that was selected as correct, which varies with each question.
* Need to recode the correct alternative in each case to '1' and incorrect to '0', then total up
* the correct and incorrect responses ('not answered'=-1).

* Create vector MATHS, with 60 slots for the arithmetic items.

vector #maths (60).

* Initialise all 60 slots to zero (i.e. incorrect), with intention of replacing by '1' if found to be
* correct, or' -1' if no answer (i.e. 5-char string is blank).

loop #i=1 to 60.
compute #maths(#i)=0.
end loop.

* Proceed through all 60 test items, re-coding slot to '1' if found to be correct, or' -1' if no
* answer (i.e. 5-char string is blank)

If (car1=' D ')#maths(1)=1.
If (car1=' ')#maths(1)=-1.

If (car2=' B ')#maths(2)=1.
If (car2=' ')#maths(2)=-1.

If (car3='A ')#maths(3)=1.
If (car3=' ')#maths(3)=-1.

If (car4=' E')#maths(4)=1.
If (car4=' ')#maths(4)=-1.

If (car5=' C ')#maths(5)=1.
If (car5=' ')#maths(5)=-1.

If (car6=' C ')#maths(6)=1.
If (car6=' ')#maths(6)=-1.

If (car7.1='A ' and car7.2=' ')#maths(7)=1.
If (car7.1=' ' and car7.2=' ')#maths(7)=-1.

If (car8=' D ')#maths(8)=1.
If (car8=' ')#maths(8)=-1.

If (car9=' B ')#maths(9)=1.
If (car9=' ')#maths(9)=-1.

If (car10=' E')#maths(10)=1.
If (car10=' ')#maths(10)=-1.

If (car11=' D ')#maths(11)=1.
If (car11=' ')#maths(11)=-1.

If (car12='A ')#maths(12)=1.
If (car12=' ')#maths(12)=-1.

If (car13=' B ')#maths(13)=1.
If (car13=' ')#maths(13)=-1.

If (car14=' E')#maths(14)=1.
If (car14=' ')#maths(14)=-1.

If (car15=' B ')#maths(15)=1.
If (car15=' ')#maths(15)=-1.

If (car16=' C ')#maths(16)=1.
If (car16=' ')#maths(16)=-1.

If (car17=' C ')#maths(17)=1.
If (car17=' ')#maths(17)=-1.

If (car18='A ')#maths(18)=1.
If (car18=' ')#maths(18)=-1.

If (car19=' E')#maths(19)=1.
If (car19=' ')#maths(19)=-1.

If (car20=' B ')#maths(20)=1.
If (car20=' ')#maths(20)=-1.

If (car21=' C ')#maths(21)=1.
If (car21=' ')#maths(21)=-1.

If (car22=' D ')#maths(22)=1.
If (car22=' ')#maths(22)=-1.

If (car23.2=' D ' and car23.1=' ')#maths(23)=1.
If (car23.2=' ' and car23.1=' ')#maths(23)=-1.

If (car24='A ')#maths(24)=1.
If (car24=' ')#maths(24)=-1.

If (car25=' E')#maths(25)=1.
If (car25=' ')#maths(25)=-1.

If (car26=' B ')#maths(26)=1.
If (car26=' ')#maths(26)=-1.

If (car27='A ')#maths(27)=1.
If (car27=' ')#maths(27)=-1.

If (car28=' C ')#maths(28)=1.
If (car28=' ')#maths(28)=-1.

If (car29=' D ')#maths(29)=1.
If (car29=' ')#maths(29)=-1.

If (car30=' C ')#maths(30)=1.
If (car30=' ')#maths(30)=-1.

If (car31=' B ')#maths(31)=1.
If (car31=' ')#maths(31)=-1.

If (car32=' D ')#maths(32)=1.
If (car32=' ')#maths(32)=-1.

If (car33=' E')#maths(33)=1.
If (car33=' ')#maths(33)=-1.

If (car34=' E')#maths(34)=1.
If (car34=' ')#maths(34)=-1.

If (car35='A ')#maths(35)=1.
If (car35=' ')#maths(35)=-1.

If (car36=' C ')#maths(36)=1.
If (car36=' ')#maths(36)=-1.

If (car37=' B ')#maths(37)=1.
If (car37=' ')#maths(37)=-1.

If (car38='A ')#maths(38)=1.
If (car38=' ')#maths(38)=-1.

If (car39.2=' D ' and car39.1=' ')#maths(39)=1.
If (car39.2=' ' and car39.1=' ')#maths(39)=-1.

If (car40=' E')#maths(40)=1.
If (car40=' ')#maths(40)=-1.

If (car41=' C ')#maths(41)=1.
If (car41=' ')#maths(41)=-1.

If (car42=' E')#maths(42)=1.
If (car42=' ')#maths(42)=-1.

If (car43=' B ')#maths(43)=1.
If (car43=' ')#maths(43)=-1.

If (car44=' D ')#maths(44)=1.
If (car44=' ')#maths(44)=-1.

If (car45=' E')#maths(45)=1.
If (car45=' ')#maths(45)=-1.

If (car46='A ')#maths(46)=1.
If (car46=' ')#maths(46)=-1.

If (car47=' B ')#maths(47)=1.
If (car47=' ')#maths(47)=-1.

If (car48=' D ')#maths(48)=1.
If (car48=' ')#maths(48)=-1.

If (car49=' C ')#maths(49)=1.
If (car49=' ')#maths(49)=-1.

If (car50='A ')#maths(50)=1.
If (car50=' ')#maths(50)=-1.

If (car51=' C ')#maths(51)=1.
If (car51=' ')#maths(51)=-1.

If (car52='A ')#maths(52)=1.
If (car52=' ')#maths(52)=-1.

If (car53=' D ')#maths(53)=1.
If (car53=' ')#maths(53)=-1.

If (car54=' E')#maths(54)=1.
If (car54=' ')#maths(54)=-1.

If (car55.1=' B' and car55.2=' ')#maths(55)=1.
If (car55.1=' ' and car55.2=' ')#maths(55)=-1.

If (car56='A ')#maths(56)=1.
If (car56=' ')#maths(56)=-1.

If (car57=' C ')#maths(57)=1.
If (car57=' ')#maths(57)=-1.

If (car58=' E')#maths(58)=1.
If (car58=' ')#maths(58)=-1.

If (car59=' E')#maths(59)=1.
If (car59=' ')#maths(59)=-1.

If (car60=' D ')#maths(60)=1.
If (car60=' ')#maths(60)=-1.

* Initialise and label two variables which will keep track of the number of correct and incorrect
* answers.

compute mathscore=0.
compute mathincorrect=0.
format mathscore mathincorrect (f3.0).
missing values mathscore mathincorrect(-1).

variable lables mathscore 'BCS70 16-year Arithmetic scores (out of 60)'.
value labels mathscore
-1 'Test not attempted'.

variable lables mathincorrect 'BCS70 16-year Arithmetic - no. incorrect scores'.
value labels mathincorrect
-1 'Test not attempted'.

* Loop through all 60 test items, increasing total each time a correct answer is encountered,
* whilst correspondingly logging incorrect responses.

loop #i=1 to 60.
if (#maths(#i)=1)mathscore=mathscore+1.
if (#maths(#i)=0)mathincorrect=mathincorrect+1.
end loop.

* If no correct nor incorrect replies, assume test was not attempted and set total to missing.

if (mathscore=0 and mathincorrect=0)mathscore=-1.

* Derive total number of questions attempted (i.e. correct plus incorrect).

compute mathanswered=-1.
if (mathscore + mathincorrect ge 1)mathanswered=mathscore+mathincorrect.
format mathanswered (f3.0).
missing values mathanswered (-1).

variable lables mathanswered 'BCS70 16-year Arithmetic test - no. of questions attempted'.
value labels mathanswered
-1 'Test not attempted'.

* Express total correct answers as a percentage of all questions in test (i.e. 60).

compute mathspc=mathscore*100/60.

variable labels mathspc 'BCS70 16-year Arithmetic percentages'.

* Display frequency counts of total score, percentage score, and total questions attempted.

fre mathscore mathanswered mathspc.

* Sort the file by variable KEY, so as to be able to merge with other longitudinal data.

sort cases by key (A) .

save outfile='j:\Cleaned BCS70 16-year arithmetic dataset (3,677 cases).sav'/keep=key
yno_tc car1 to mathspc.

Centre for Longitudinal Studies
Institute of Education
20 Bedford Way
London WC1H 0AL
Tel: 020 7612 6860
Fax: 020 7612 6880
Email cls@ioe.ac.uk
Web http://www.cls.ioe.ac.uk

	CLS_Data_Note_2008_1.pdf
	Arithmetic test.pdf
	Arithmetic test.pdf
	BCS70 16-year Document B.pdf
	BCS70 16-year Student Test Booklet (Document B)
	Reading Test
	Matrices Test
	Arithmetic Test
	Vocabulary Test
	Attitudinal Scales
	Background Information
	Spelling Test Instructions
	JIIG-CAL Occupational Interests Guide

