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Structure Abstract 

Objectives- to provide an evaluation of a range of currently available software remedies 

to handle missingness in the context of longitudinal research. Data Source- an 

illustration from the 1958 British Cohort Study compares and contrasts new software 

remedies to handle missing data. In particular, the SPSS Missing Values Analysis module 

(SPSS Inc., 1997) is compared to NORM (Schafer, J., 1997) and SOLAS (Statistical 

Solutions, 1999). Setting- England and Wales. Sample- a ten per cent random sample 

(1721 men and women) from the National Child Development Survey (NCDS, otherwise 

referred to as the 1958 British Birth Cohort Study). The study follows 17,000 births in 

one week in March 1958 until the present day. Results- for a regression model used to 

predict maths attainment at age 11 years for this cohort we conclude that analyses based 

on fully observed data (using casewise deletion) may miss, under- or overstate 

substantive relationships that occur post imputation. Conclusion- it is not simply enough 

to apply missing value analysis or fill-in missing values in a single imputation without 

taking careful account of missing data uncertainty. It is worth making the effort to use 

multiple imputation and fully exploit longitudinal data to understand the nature of any 

potential response bias prior to analysis. Wherever, imputation procedures are used it is 

recommended that analysts routinely include a casewise indicator in their analysis to 

record the impact of any missing data adjustment. 

 

 

 

1. Introduction 

Missing data is a pervasive fact of life. Textbook discussions of missing data generally 

make the distinction between unit nonresponse (complete absence of any information 

from a sampled individual or case) and item nonresponse (an individual who cooperates 

but for some reason has missing values for certain items). As a convention weighting 

adjustments are used for the former and imputation for the latter. In longitudinal surveys, 

like the NCDS used in this paper, there is the additional complication of wave 

nonresponse: individual cohort members who respond to some but not all waves of data 
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collection (see, Shepherd, 1993). From a longitudinal perspective, this may be viewed as 

a set of item nonresponses in a longitudinal record, suggesting that imputation may be 

appropriate (Rovine and Delaney, 1990). From a cross-sectional perspective, it may be 

viewed as unit nonresponse, for which a weighting adjustment may be appropriate. Thus, 

weighting, imputation or a combination of both may be considered to compensate for 

missing data due to wave nonresponse. The main focus of this paper is an evaluation of  

model-based methods for item nonresponse as described in Rubin (1987) and Scahfer 

(1997) and, the propensity score method (Rubin, 1987; Rubin and Schenker, 1991) as 

applied to NCDS data. The work arose originally from a programme of investment in the 

development of statistical methodology by the UK’s Economic and Social Research 

Council (ESRC). The illustrations presented in the paper use regression analysis to 

investigate the impact of ignoring any item nonresponse. Three software products are 

used; notably the SPSS Missing Values Analysis module, SOLAS for missing data 

analysis (Statistical Solutions Ltd, 1999) and NORM as developed by Schafer (1997). 

Rather than simply ignore any cases with missing data we apply the likelihood-based 

estimation procedures available in SPSS and NORM to average over missing data. SPSS 

adopts an EM (expectation-maximization) algorithm for multivariate normal data 

(Dempster, Laird and Rubin, (1977) and fills-in (imputes) missing values. For further 

comparative purpose we also explore the use of SPSS missing values analysis regression 

and a SOLAS model based method which use multiple linear regression for preselected 

predictors of missing values. Both NORM and SOLAS use multiple imputation  (Rubin, 

1987, Schafer, 1997) to generate several (plausible) versions of filled-in data. Each new 

dataset is analysed separately and the resulting parameter estimates are finally combined 

using Rubin’s (1987) rule for scalar estimands. The next section briefly expands on these 

approaches for handling item nonresponse. 
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2. Background to methodology 

 

 

The dataset for our example  can be considered as a rectangular matrix, Y, consisting of 

n= 1721 cases or rows and p= 5 columns. See figure 1. We have adopted a convention, as 

required in NORM, to code any item for which there is a missing response as ‘99’ 

(emboldened for convenience). Full descriptions of the items will follow in section 3. 

Figure1: Sample Data matrix to be imputed 

 
99 1 9 3 5 

7 1 19 99 99 

5 1 8 99 99 

5 2 6 3 3 

5 1 16 3 4 

5 2 5 4 4 

2 2 26 7 3 

7 2 12 3 3 

4 1 27 5 5 

99 2 6 99 99 

99 1 32 99 99 

5 1 15 99 99 

 

 

 

 

Sample of input data. 

Note all missing values 

have been set to 99 and 

the data set contains no 

alpha characters. 

 

Figure 2 summarises the extent of missingness in our data according to the number of 

items missed per case. 

 

Figure 2 The degree of missingness 

No. of items  Frequency  %  Cumulative % 

 missed 

 0   825 47.9  47.9 

 1   230 13.4  61.3 

 2   331 19.2  80.3 

 3   166   9.6  90.2 

 4   169   9.8  100.0 

 Total            1721 
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Conventional textbooks in advanced statistical methods would simply assume that the 

matrix is fully observed and there are no missing value indicators. The simplest way to 

obtain a fully observed data set is, of course, to simply delete any case with at least one 

missing value code. This would reduce our dataset to 825 cases, a loss of 52% of our 

original sample. The extent of this loss is illustrated in figure 2. 

 

Loss of information is likely to lead to inevitable bias unless the deleted cases are missing 

completely at random (MCAR). Casewise deletion would assume that the missing values 

are a simple random sample of all data values. Even if this assumption were true our 

estimates would still be less efficient. Likelihood estimation procedures in SPSS and 

NORM assume that the missing data are missing at random (MAR). At first, this may 

appear to contradict the MCAR label. If data is missing at random then surely the missing 

data must be a random sample of all data values? Not so, MAR is actually less restrictive 

than MCAR. If you like, completely means exactly that, ‘completely at random’ whereas 

‘at random’ implies that missing values behave like a random sample of all values within 

subclasses defined by observed data. Rubin (1976) defines MAR more formally by 

including a distribution for response indicator variables that take the value 1 if an item is 

recorded and 0 otherwise (the vector R below). With the MAR assumption this 

distribution of missingness patterns does not depend on the missing values. The missing 

data mechanism is said to be ignorable. Schafer (1987) puts this crucial assumption made 

by ignorable methods ‘not that the propensity to respond is completely unrelated to the 

missing data, but that this relationship can be explained by data that are observed’. What 

is observed not only includes the values included in the data matrix, but also the patterns 

of missingness themselves. Algebraically, we can summarise the MAR assumption as 

follows: 

 

Firstly, partition Y as Yobs = observed data and Ymiss = missing data then posit a 

probability model for R, P(R|Y,γ ) which depends on Y as well as some unknown 

parameters, γ. The MAR assumption is that this distribution does not depend on Ymiss. 
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 Put another way, 

 

 P(R|Y, γ ) = P (R| Yobs, Ymiss, γ) = P(R| Yobs, γ )   (1)1 

 

Various approaches to filling-in incomplete data that do not assume ignorability are 

beyond the scope of this paper. Little and Rubin (1987) review some of these methods, 

whilst Schafer (1997) contains references to more recent applications. 

 

Formally, let Y denote the 1721 x 5 (n x p) matrix of complete data, which is not  fully 

observed, where yi denotes the ith row of Y. By the iid assumption, the probability 

density function of the complete data is written 

 

 P(Y| θ ) =   nΠi=1 f(yi | θ )     (2) 

 

where f  is the probability function for a single row, and θ is a vector of unknown 

parameters. 

Now, consider the imputation (filling-in) procedures themselves.  

NORM 

The implementation of EM for multivariate normal data with an arbitrary pattern of 

missingness is described in detail in Schafer (1997). To summarise consider a matrix of 

missingness patterns corresponding to Y. In general, there will be S unique patterns 

appearing in the data matrix (all possible ways of observing 1 missing value amongst p 

variables, 2 missing values amongst p and so on up to a maximum of p-1 missing values 

from p). This is vital information for the E(xpectation)-step. Essentially,  Ymiss is 

predicted from Yobs and θ . The distribution P(yi (miss) | y i (obs) , θ ) is a multivariate normal 

linear regression of  y i(miss) on y i(obs) for the missingness pattern corresponding to row i. 

                                           
1 Technically, the missing data mechanism is said to be ignorable if both MAR and distinctness hold. The 
latter condition simply implies that knowledge of  θ provides little information about  γ and vice-versa. 
Alternatively, the propensity to respond is not related to the missing values. Schafer provides a number of 
examples where ignorability is known not to hold. 
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(Schafer, 1997, pp.164-166). Once Ymiss has been predicted the M(aximistation) step is 

fairly straightforward. Further estimates of θ are obtained from Yobs and Ymiss until the 

parameter estimates converge. The rate of convergence will depend on the fractions of 

missing information. As might be expected high rates of missingness will slow 

convergence.  

Schafer argues that multiple imputation shares the same underlying philosophy as EM2 

solving an incomplete-data problem by repeatedly solving the complete-data version. It is 

a simulation-based approach to missing data. Our multiple imputations need to be proper, 

by which Rubin (1987) defines as iterations of Ymiss that are suitably separated to ensure 

independence. Otherwise there is a danger that successive iterates of  Ymiss will be 

correlated. Iterates of  Ymiss {Ymiss
(t), Ymiss

(2t), …. Ymiss
(mt) }are collected using data 

augmentation (DA) such that t is large enough to achieve independence. DA bares strong 

similarity to EM where the E-and M-steps are replaced by stochastic I(mputation)- and 

P(osterior)-steps (Tanner and Wong, 1987). The term DA arose from applications of 

these algorithms to Bayesian inference with missing data. They represent a class of 

Markov chain Monte Carlo (MCMC) techniques for creating psuedorandom draws from 

probability distributions (see Gilks, Richardson and Spieglehalter (1996) for an 

overview). On the I-step draw a value of the missing data from Ymiss 

 

  Ymiss
(t+1)   ~  P(Ymiss | Yobs, θ (t) )  (3a) 

 

and on the P-step draw a new value of θ from the complete data-posterior  

(P(θ|Yobs, Ymiss ).  

 

  θ (t+1) ~  P(θ | Yobs, Y 
miss

(t+1) )  (3b) 

 

This creates a Markov chain Ymiss
(1), θ (1), Ymiss

(2), θ (2), ……where the distribution of each 

pair of estimates only depends on the previous draw (the Markov chain property) which  

                                           
2 and data augmenation where the E- and M-steps are replaced by stochastic I- and P-steps (Tanner and Wong, 1987).  
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eventually converges after repeated applications of 3a and 3b from an initial starting 

value for θ.3 The chain is said to have converged (or achieved stationarity) by t iterations 

if θ (t) is independent of θ (0), θ (2t) is independent of  θ (t), etc. This is assessed by means of 

time series plots (parameter estimates versus iteration number) and autocorrelation 

functions (ACF’s) of θ (the lag-k autocorrelation versus k for parameter estimates).  Step 

by step illustrations of a NORM imputation run are given in Wiggins et al., (1999). The 

data for this illustration is also available on request. 

SOLAS 

Secondly we look at methods used by SOLAS (1999). In SOLAS each variable is filled 

in using separate multiple regression models, unlike NORM where all missing variables 

with missing data are imputed simultaneously in a multivariate regression. SOLAS 

provides two methods for filling in data: the predictive model based method and the 

propensity score method. For both of these methods, the approach used by SOLAS is to 

first organise the missing data in a monotone pattern. A monotone pattern is one where 

the data matrix of observed values looks rather like a staircase as shown in figure 3. The 

monotone pattern is achieved in SOLAS by two steps. Firstly,  data is sorted by case and 

variable order to get as close as possible to a monotone pattern. Secondly, any missing 

values that destroy the monotone pattern are multiply imputed using a series of available-

case regressions.  That is, for each pattern of missing data, missing values of each 

variable are imputed from a regression equation using all available observed and 

previously imputed values of the variables selected for the model. These imputations are 

independently generated by randomly drawing regression parameters and error terms 

from the posterior distribution given the observed data (Rubin, 1987).  

 

The advantage of a monotone pattern of missing data is that imputation in a multivariate 

data set is reduced to a series of single variable imputations. Each variable is imputed 

starting with the variable which has the lowest proportion of missingness and proceeding 

left to right throughout the monotone structure (Figure 3). The user specifies independent 

variables for each imputation. These predictors are either completely observed covariates 

                                           
3 For more on choice of starting values see Schafer (1987, pp.85-7) 
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or previously imputed variables. In our example the covariate is sex and all the variables 

other than the one being imputed are selected, those which are positioned to the left in the 

monotone structure being used. These monotone imputations are generated using either 

the predictive model based or the propensity score method. 

  

Figure 3 Data with a monotone pattern of missingness 

 

 

The predictive model based method uses ordinary least squares regression. The variable 

to be imputed is regressed on the chosen covariates and previously imputed. The m 

imputations are independently generated using the values predicted by the regression 

equation, with the parameters randomly drawn from the posterior distribution given the 

observed data (Rubin, 1987; Gelman et al., 1995) and a randomly drawn error term. 

Further details are given in SOLASTM 2.0 User Reference, Appendix C.  

 

The propensity score method is based on a logistic regression (Everitt, 1977). An 

indicator variable rj for the missing variable yj is regressed on the chosen covariates 

(including the previously imputed variables). The propensity score is the conditional 

probability of missingness given the vector of observed covariates. The imputations for 

each missing value of  yj (miss)  are independent random draws from  a subset of observed 

values of yj(obs), called a donor pool, with propensity scores close to that assigned to the 

missing
data

observed
data

1751
Cases

5 Items
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case with missing data. Donor pools can be defined in various ways (SOLASTM 2.0 User 

Reference, Appendix E). The method adopted here is to divide the ordered propensity 

scores into quintiles (Lavori et al., 1995). A random sample, equal in size to the observed 

responses, is drawn , with replacement, from the yj(obs) within the propensity quintile. 

This sample is called the posterior predictive distribution. For each missing case, the 

imputed value of yj is a random draw (with replacement)  from the posterior predictive 

distribution. Formally, the imputations are drawn by an Approximate Bayesian Bootstrap 

method (Rubin and Schenker, 1991). This process is repeated m times to produce m 

imputations for each missing case. 
 

Both SOLAS and NORM are multiple imputation methods in which the Ymiss are 

replaced by a number of plausible versions (m) of Ymiss  where m>1. Each of the m filled-

in datasets are then analysed by conventional methods (multiple regression etc) and the 

results are combined. The variability amongst the resulting parameter estimates provides 

a measure of uncertainty due to missing data. This is combined with measures of ordinary 

variation to produce a single measure of variation (the annex contains Rubin’s rule for 

scalar estimands). This represents a major advantage over EM which will only provide 

one complete dataset and no standard errors. Multiple imputation can be highly efficient , 

even for very few m. If the fraction of missing information about a scalar estimand is λ, 

the efficiency of an estimator  based on m imputations is (1+ λ/m)-1 on a variance scale 

(Rubin, 1987, p.114). When, λ =0.3, for example, an estimate based on m=5 will be 94% 

efficient. Put another way, the standard error will only be about 1.03 (√ (1 + 0.3/5)) times 

as large as the estimate with an infinite value for m.  

 

To  complete our evaluation we selected two single imputation model based procedures 

available under the SPSS Missing Values Analysis (1997) option: regression and EM 

methods. The regression method simply uses multiple regression  based on a prespecified 

set of independent variables to estimate missing values and adjusts the predicted values 

by adding a random component. Under the default option used in our example a 

randomly selected residual based on complete case analysis is added to the predicted 
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value. The EM algorithm available in SPSS is decscribed above as the first step in a 

NORM imputation. Each of these options fills in missing values once only. 

 

3. Analytical context using 1958 British Cohort Study data 

The decision to base our comparative evaluation on a 10 per cent sample of cases from 

the 1958 British Cohort Study was simply a convenience for the potential user who 

wishes to replicate our analyses or try alternative missing-data procedures (the data is 

available on request from the authors). The analytical approach is to capitalise on the 

temporal sequencing of the data to build a series of path diagrams in the context of 

exploring the relationship between a child’s birth antececedents subsequent educational 

performance and ultimately, attitudes to politics (Bynner, Ukoumunne and Wiggins, 

1996).   

 

Figure 4:Path Diagram for evaluation 

 

 

Data from the NCDS have been collected for people 

born in the first week of March 1958 at ages 7, 11, 

16, 23 and 33. The original sample was collected as 

part of a perinatal mortality survey (PMS). The 

illustration that follows simply focuses on the 

relationship between birth antecendents and maths 

understanding age 11 years. The path diagram is 

presented in figure 4. 

 

Table 1 lists the 5 variables used in our first regression model based on fully observed 

data. This analysis is subsequently used to illustrate the impact of ignoring incomplete 

cases in section 6. Every case analysed here has a code for gender. For NCDS wherever 

there was a missing value for gender (1.8% of all cases) there was no other information 

for the variables selected in this illustration. Otherwise the level of item non-response 

varied from around 22% (social class of father at birth) to 39% (father’s age of leaving 

Maths understanding
age 11

(MATHST2)

p1Sex
(SEXO)

Social Class
(SOCLAS1)

Father’s age of
leaving school
(PALEAVE)

Mothers’s age of
leaving school
(MALEAVE)

p2

p3

p4
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school). Viewed from a perspective of unit non-response the presence of a gender code 

for every case ensures complete recovery of lost information under subsequent 

imputation. 

 

Table 1: Variables used in regression modelling 

 
SPSS label NORM label* Scoring (% item non-response in parentheses) 

SOCLAS1 VAR_1 1=high to 7=low (21.8) 

SEX VAR_2 1=girl, 0=boy (0.0) 

MATHST2 VAR_3 Standardised maths score (22.7) 

PALEAVE3 VAR_4 Father’s age of leaving school (38.8) 

MALEAVE3 VAR_5 Mother’s age of leaving school (37.8) 

*Used in section 6. 

 

4. Analytical strategy for comparative evaluation 

 

Having a strategy to handle missing data is necessary for exploiting all of the available 

information. Schafer (1998) argues that imputation modelling should not only include 

variables that are crucial to the analysis but also predictive of them and/or missingness. 

In a birth cohort study we have rich baseline data that can help us understand the impact 

of any panel attrition (Shepherd, 1993). In particular we are able to gain insight about the 

characteristics of those cases with partial (item) nonresponse by comparing their 

characteristics at birth with those of the cases who have fully observed data. We have 

extended our imputation procedures to include certain items recorded during the PMS 

wave (0). Four variables are included for illustrative purposes. These are listed below in 

table 2: 
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Table 2: Additional variables included from the Perinatal Mortality Survey used in 

imputation procedures 

NORM label Description 

VAR_6 Persons per room 

VAR_7 Birthweight 

VAR_8 Mother’s smoking during pregnancy 

VAR_9 Age of mother at first birth 

 

Each of these variables predicts the degree of missingness (as indicated by NM in the 

analysis: a simple count of the number of missing values per case). Low birthweight 

cohort members appear to be underrepresented amongst those with fully observed data 

(NM=0) as do those whose mothers had their first child as a teenager, smoked heavily 

during the pregnancy (leading to the cohort member’s birth) and those who were living in 

accommodation with more than 2 persons per room. Full details are given in Wiggins et 

al., (1999). 

 

In addition to using the PMS variables to enhance our multiple imputations we ran all 

regressions with and without NM present in the modelling. If cases with greater degrees 

of missingness are more similar to those without any information at all than those who 

fully cooperate then one might expect this indicator to act as a proxy to detect any 

differences between cases that might remain after filling-in missing values. In this way, 

NM may flag the need to review the ignorability assumption. 

 

In sum, the comparative analysis that follows first contrasts regression parameter 

estimates based on the fully observed (casewise deletion) data alone with that based on 

NORM, SOLAS predictive model, SOLAS propensity score, SPSS regression and SPSS 

EM for missing values analysis. All analyses are then repeated in the presence of the NM 

indicator. Finally, all missing data procedures are replicated to include the four PMS 
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variables as predictors of missing values for the explanatory variables included in the 

regression. 

 

It was decided average estimates for multiple imputation over 5 imputations. Based on a 

complete matrix of 1721x5 (=8605) cells of information the fraction of missingness was 

24 per cent.4 Under these conditions (Schafer, 1998) multiple imputation estimates with 

m=5 are expected to be around 95 per cent efficient.  

  

5. Results 

All analyses first present the regression results obtained under casewise deletion (n=825 

fully observed cases) with single imputation and then with the multiple imputation 

models. Tables are therefore divided as a) and b). For convenience the results for 

analyses of fully observed data is reproduced in both sets of tables. Wherever estimated 

regression coefficients are more than double their standard error they have been 

italiscised and emboldened. Wherever a standard error is greater than the equivalent 

value for the fully observed analysis it has been underscored. 

                                           
4 This can be derived directly from figure 2. 
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5.1 Regression analyses using model variables to fill-in missing values 

 

Table 4 Comparison of regression analyses for fully observed data (n=825) with 

imputation analyses (n=1721). 

 

Table 4 (a) Analysis for fully observed data compared to single imputation models 

 

 Fully  

Observed 

SPSS 

Reg 

SPSS 

EM 

 B StErr B StErr B StErr 

Constant 19.868  2.221 17.362 1.496 17.748 1.560 

Sex   -.916    .637   -.970 .446 -.849 .387 

Soclas1 -1.719    .229  -1.315 .155 -1.669 .161 

Maleave3    .652    .309     .810 .193 .592 .230 

Paleave3  1.203    .263  1.082 .162 1.558 .198 

 

Table 4 (b) Analysis for fully observed data compared to multiple imputation 

models 

 Fully  

Observed 

SOLAS 

Propensity 

SOLAS 

Predictive 

Norm 

 B StErr B StErr B StErr B StErr

Constant 19.868  2.221 18.052 1.838 17.524 2.321 19.166 1.933

Sex   -.916    .637 -0.661 0.487 -0.985 0.542 -0.982 0.495

Soclas1 -1.719    .229 -1.516 0.189 -1.447 0.246 -1.596 0.168

Maleave3    .652    .309 0.71 0.195 0.832 0.252 0.6708 0.387

Paleave3  1.203    .263 1.149 0.265 1.161 0.183 1.0931 0.249

 

 

An analysis based on the fully observed data alone would find little evidence that gender 

has little effect on maths attainment aged 11 years whereas being born to a father with 
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low social class and having parents who have left school early will significantly lower a 

cohort member’s attainment score. SPSS regression and EM analyses would only strictly 

affect the substantive finding for gender. In both analyses, girls are significantly 

disadvantaged in their maths performance at age 11 years. However, under SPSS EM the 

impact of father’s age of leaving school looks to be relatively stronger than under SPSS 

regression. Averaging over both SOLAS and NORM imputations leaves the gender non-

significant. Mother’s age of leaving school is now non-significant under NORM whereas 

the effect of both father’s and mother’s age of leaving school remain strong under 

SOLAS models. It would appear that the effect for social class is most consistent across 

these analyses. What about if we now include the missing indicator, NM, following the 

imputation procedures? 
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The results are presented in table 5 below: 

 

Table 5: Comparison of regression analyses for fully observed data (n=825) with 

post-imputation analyses (n=1721) that include a degree of missingness indicator 

(NM). 

Table 5 (a) Analysis for fully observed data compared to single imputation models 

 

 Fully  

Observed 

SPSS 

Reg 

SPSS 

EM 

 B StErr B StErr B StErr

Constant 19.868  2.221 17.532 1.496 18.150 1.560

Sex   -.916    .637 -.980 .446 -.877 .386

Soclas1 -1.719    .229 -1.316 .155 -1.662 .161

Maleave3    .652    .309 .804 .193 .599 .230

Paleave3  1.203    .263 1.085 .162 1.576 .198

NM   -.133 .156 -.385 .135

 

Table 5 (b) Analysis for fully observed data compared to multiple imputation 

models 

 

 Fully  

Observed 

SOLAS 

Propensity 

SOLAS 

Predictive 

Norm 

 B StErr B StErr B StErr B StErr

Constant 19.868  2.221 18.209 1.858 17.88 2.313 19.600 1.837

Sex   -.916    .637 -0.667 0.486 -1.000 0.543 -0.996 0.494

Soclas1 -1.719    .229 -1.514 0.190 -1.442 0.245 -1.600 0.168

Maleave3    .652    .309 0.709 0.195 0.828 0.257 0.667 0.382

Paleave3  1.203    .263 1.151 0.265 1.177 0.185 1.0941 0.243

NM   -0.133 0.198 -0.335 0.245 -0.3198 0.227
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Compared to the previous contrasts our substantive conclusions remain broadly intact. 

However, what we glean from the SPSS regression and EM modelling is that the impact 

of the degree of missingness reported for a case is somewhat contradictory. Under both 

SPSS regression and SPSS EM we witness a negative effect but statistical significance is 

only reported under SPSS EM. The effect remains negative under both SOLAS and 

NORM but not significant. Our substantive conclusions also concur with those obtained 

under the previous multiple imputation analyses in table 4(b). Social class and the age 

father’s left school remain consistently significant in these analyses. Gender remains non-

significant throughout whereas the age mother’s left school is only significant under the 

SOLAS analyses. Under all analyses that include a degree of missingness indicator we 

would conclude that those individuals with higher degrees of missingness are much more 

likely to have lower maths scores. However, the seriousness of the relative impact of the 

indicator varies. But what would happen, if we now take greater account of birth 

characteristics (from the PMS) that may be predictive of missingness in our imputation 

procedures? The results are presented in table 6 below. 
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5.2 Regression analyses using model variables and selected birth characteristics to 

fill-in missing values 

 

Table 6: Comparison of regression analyses for fully observed data (n=825) with 

imputation procedures (n=1721) that include PMS characteristics. 

 

Table 6 (a) Analysis for fully observed data compared to single imputation models 

 Fully  

Observed 

SPSS 

Reg 

SPSS 

EM 

 B StErr B StErr B StErr

Constant 19.868  2.221 19.577 1.578 18.488 1.548

Sex   -.916    .637 -.710 .455 -.888 .388

Soclas1 -1.719    .229 -1.566 .163 -1.732 .159

Maleave3    .652    .309 .633 .191 .749 .228

Paleave3  1.203    .263 .955 .168 1.434 .199

NM   -.368 .159 -.433 .136

 

 

Table 6 (b) Analysis for fully observed data compared to multiple imputation 

models 

 

 

 

Fully  

Observed 

SOLAS 

Propensity 

SOLAS 

Predictive 

Norm 

 B StErr B StErr B StErr B StErr

Constant 19.868  2.221 21.583 1.657 19.265 1.853 19.850 1.671

Sex   -.916    .637 -0.742 0.497 -0.704 0.480 -0.704 0.622

Soclas1 -1.719    .229 -1.735 0.170 -1.674 0.206 -1.739 0.246

Maleave3    .652    .309 0.579 0.253 0.797 0.234 0.768 0.262

Paleave3  1.203    .263 0.742 0.191 1.056 0.192 1.103 0.262

NM   -0.404 0.191 -0.48 0.184 -0.335 0.268
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Again, the substantive findings are very similar to those above. Although, if one were 

dependant on SPSS EM alone a significant gender effect would be reported. Now, it 

would also appear that NORM has produced a significant finding for the impact of 

mother’s age of leaving school. Ironically, the substantive conclusions under multiple 

imputation analyses concur with those obtained under casewise deletion.  

Under single imputation methodologies estimates may appear to be more precise than 

they really are. This may well account for the significant findings for the effect of gender 

under these analyses. The estimated standard errors for multiple imputation methods 

reflect the uncertainty in the filling-in procedure. They are larger than those obtained 

under single imputation. Generally, however the standard errors under multiple 

imputation are smaller than those obtained under the analysis of fully observed data 

(there are some exceptions that confirm the cautious averaging under Rubin’s Rule). This 

is comforting as the sample size has doubled.  

What we able to argue is that the multiple imputation results in table 6 when birth (PMS) 

characteristics are used in the imputation procedure are high quality. The imputation 

models in table 6 are more informative about incompleteness. However, the conclusion 

for the impact of the degree of missingness indicator (NM) is less clear. Results under 

NORM and SOLAS diverge and, therefore, suggest the need to investigate the 

ignorability assumption.  

 

6. Discussion 

This paper has confirmed the importance of carrying out analyses in the presence of 

missing data. Whilst it may be convenient and easy to jettison partial information it is a 

risky action which carries with it the rigid assumption of MCAR. With longitudinal birth 

cohort data we are in an advantageous position. It is possible to carefully select predictors 

of missingness and routinely include them in multivariate analyses. One barometer of the 

efficacy of so doing is to include an indicator of the level of imputation present for any 

case. The illustration has demonstrated that even with easy application remedies in SPSS 

substantive conclusions might be awry and the propensity of those with partial 

information to respond poorly adjusted.  
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NORM is theoretically sound. The procedure assumes multivariate normality. For 

categorical variables such as gender this can be problematic. At present special provision 

has to be made to truncate imputed missing values for these variables. Whilst (Schafer, 

1997) presents the necessary theory to handle non-normal data the software is not yet 

readily available. NORM also depends on the iterative MCMC process converging. 

 A clear advantage under the SOLAS propensity score method is that imputed values are 

drawn from observed values. Thus ensuring that only plausible values are presented 

without any underlying distributional assumptions. However the authors do not generally 

recommend the SOLAS propensity score method for inferences about associations as 

opposed to marginal distributions. The relationships between variables are not well 

preserved under this approach (Ely, 2001). 

 

Both NORM and SOLAS require a number of iterates or replicates as essential means to 

adjust for missing data uncertainty. This may be a deterrent to the data analyst who will 

have to store resulting filled-in data sets (typically around 5) and average parameter 

estimates and compute standard errors for subsequent analyses. 

In longitudinal research where the pattern of attrition falls naturally into a monotone 

structure data is managed equally well under both SOLAS and NORM. Whilst SOLAS 

does not require data to be monotone, the method used to impute data that does not fit a 

monotone pattern is less principled than under NORM (Rubin, 2000). 

Whatever reservations the analyst might have about using NORM or SOLAS they hold 

inferential superiority over easy to implement single imputation methods, such as those 

currently available in SPSS (Heijan and Rubin, 1990; Raghunathan and Paulin, 1998). 

This is because single imputation methods fill-in data but leave uncertainty improperly 

estimated.  

 

There is no quick or easy solution to the problem of how to handle missing data. 

Analyses based on imputations will only be ‘approximately correct’ (Schafer, 1998). This 

paper demonstrates of how the gap between theory and practice can be bridged by 

making our assumptions about the response process (or missing data mechanism) 

transparent. This can advance our understanding of the complexities and richness of data 
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sources and fully exploit the information they contain. To conclude with a suitable 

reminder from Little and Rubin (1987): 

 

 ‘knowledge, or absence of knowledge, of the mechanisms that led to certain values being 

missing is a key element in choosing an appropriate analysis and in interpreting the 

results’ 
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Annex : Rubin’s Rule for obtaining scalar estimands and corresponding estimates 

of variation 
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