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1. Introduction

An increasing number of large longitudinal and retrospective studies — the
National Child Development Study (Shepherd 1985), the Women and
Employment Survey (Martin & Roberts 1984), the (US) Panel Study of
Income Dynamics (Duncan & Mathieovitz 1984), the (US) National
Longitudinal Study (Palmore et al. 1981) are just a few examples - are
attempting to analyse life histories.

All these studies have as a major focus the occurrence of events cither
singly or in sequence, which involve the transition between a discrete
number of states, and the time at which such transitions occur. One example
would be the study of duration of unemployment, in which we would
investigate the timing of the transition from the state of being unemployed to
the state of being employed. Other examples would be age of marriage or
childbirth; when people become owner occupiers; the effect that exposure to
radiation has on cancer incidence.

I1. Panel vs. survival methods - discrete or continuous time?

Such a focus represents a major departure from the panel techniques which
were the original methods developed to handle longitudinal studies and are

wa
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of course still used (Plewis 1985). Longitudinal studies of children and young
people in Britain (The National Study of Health and Development, NSHD,
Atkins et al. 1982; The National Child Development Study, NCDS, Fogel-
man 1983; Child Health and Education in the Seventies, CHES, Osborne
et al. 1984) have typically consisted of a series of sweeps, each of which is
a cross-sectional snapshot of the situation, recording such information as
test scores, health, membership of minority groups and so on. Multivariate
analyses of these differ according to whether the response variable is con-
sidered continuous or categorical. Whether an individual had had contact
with welfare services since the last sweep (a categorical dependent variable)
could be analysed using logistic regression, whereas in the analysis of
progress in mathematics ability between 11 and 16, ordinary least squares
regression may be used. Such techniques may be described as discrete time
or panel models.

However, in analysing discrete events occuring over time, particularly if
there is more precise information on the time of events, there are a number
of arguments, some more telling than others, favouring the use of continuous
time models.

(1) Frequently there is no natural time period within which respondents
make their decisions or attain certain statuses.

(2) Data collection frequently occurs at time to suit funding or adminis-
trative convenience. Even where the timing of data collection is planned for
crucial points on the life cycle, this may only hold for a small proportion of
processes in a multipurpose study, or only for one part of the geographical
research area. To give an example, the National Child Development Study
planned its 11 year sweep (Foglemar. 1983) for the time when the children
first started in secondary school: this of course only holds for England and
Wales, Scottish children transferring a year later, at 12.

(3) Where a panel study collects information on the state of an individual
at well-spaced discrete time points it can by its very nature contain only
partial information about the path of a stochastic process. Thus a child who
is at care when surveyed at 11 and 16 may have been in care all that time,
or these may represent two isolated and short-term incidents. Even when we
can be sure that an individual has undergone at most one such change, or
where we are only considering the first occurrence of an event, biases arise
when discrete time models, such as logistic regression, are used to estimate
continuous time processes. This problem is discussed below, under Non-
distinct failure times, in Section V, Covariance Analyses of Censored
Survival Data.

(4) It has been said that if the only tool you have is a hammer, then you
tend to treat everything as if it were a nail. In the past, quantitative analysis
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in the social sciences has been very much restricted by the availability
of particular statistical techniques. All our readers must be familiar with
examples where a theoretical analysis has had Procrustean treatment to
fit it into the framework of (say) multiple regression or factor analysis.
Yet, with the advent of new, powerful and readily accessible software,
particularly SAS (SAS Institute Inc. 1982) and GLIM (Baker & Nelder
1978) as well as the advent of hardware sufficiently powerful to permit
the maximum likelihood calculations involved, we are approaching a
situation where the majority of properly specified hypothesis can be tested
statistically.

Survival-type approaches permit a relatively realistic modelling of many
histories where discrete transitions are of interest. For this reason they will
be of considerable value to research workers constructing causal models in
sociology, economics, education, psychology and biomedical sciences.

(5) Tuma and Hannan (1984) refer to panel analysis as ‘“‘equilibrium”
analysis and the survival approach as ‘““dynamic” analysis, and advocate the
claims of the latter by drawing a parallel with a change in sociological
thinking from dominance by a structural-functional perspective to a more
diverse spectrum with a greater emphasis in many of the new directions on
disequilibrium and change. In our view such a gloss is somewhat suspect.
The labels “equilibrium” and “dynamic” analysis are at least misleading,
and at worst downright biased against the panel approach. While it is
undeniable that the latter does consist of a series of cross-sectional snap-
shots, it does not follow that these snapshots represent equilibrium pos-
itions, and indeed such methods are explicitly focussed towards change and
development. The charge of being merely (?) an “equilibrium” approach
would be more accurately levelled at cross-sectional studies. It is of interest
to note that a similar contrast was made between panel and cross-sectional
studies (in favour of panel studies!) in Wall and Williams (1970).

For these reasons, where an individual is in one of a number of mutually
exclusive states which are constantly at risk of changing, it may be preferable
to view such process not from a panel perspective but from a discrete state,
continuous time (event or survival) perspective.

Since the seminal paper by Cox on the covariance analysis of censored
survival data (1972) there has been a veritable explosion of publications on
survival and event history, the majority in econometrics, engineering and
biomedical science.

The purpose of this paper is to inform social sciences about the applicabil-
ity of such techniques in their own fields. Where appropriate, we illustrate
characteristics of survival-type analysis by contrast with the more traditional
panel approach.
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111. Nomenclature

Approaches which consider the occurrence and timing of events and
variously described as survival analyses (Cox and Oakes 1984), event history
analyses (Tuma and Hannan 1984) and reliability theory or renewal theory
(Barlow and Proschan 1975). For simplicity we shall use the term survival
analysis to subsume the other two. We shall use the term event history
analysis but confine it to multispell survival techniques.

Survival analysis as a rule is a continuous time approach. Discrete time
survival analysis is possible (see Section V below), but more usually appar-
ently discrete time processes are actually continuous time processes where
the recorded time has been rounded to the nearest whole unit which may be
relatively large - for example to the nearest month (Hutchison 1987) or even
year (Davies 1983). '

Discrete-time approaches and where the focus is on a change of state
between a number of sweeps, we shall continue to describe, as above, as
panel-type techniques. Survival analysis, in some senses, may be regarded as
a dual of the panel-type approach, in that the panel approach assumes a
relatively small number of time points and may assume a continuous out-
come space, whereas survival analysis typically assumes a relatively small
number of outcome states and generally a continuously-measured time
variable.

The paradigm of these approaches is summarised most clearly in the table
below:

Discrete and continuous time and outcome: example of approaches

Time Outcome
Discrete Continuous
Discrete Logistic and log linear OoLS
(Panel) regression (Discrete time regression

Survival methods)

Continuous Survival methods Deterministic and Stochastic
Differential Equations (Tuma
and Hannan 1984) Integral
equations

Deterministic and stochastic differential equation and integral equations are
not covered in this paper but included for completeness. Those interested
will find an outline in Tuma and Hannan (1984).
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IV. Basic concepts
Terminal event

A Terminal Event (TE) occurs when the transition under investigation
occurs, for example an individual gets married, leaves a job, has an accident
or dies of a particular illness. The somewhat gloomy terminology is an
acknowledgement that much of the theory for this kind of approach
developed in biomedical science where it was utilized to investigate survival,
particularly in cancer studies. However, the terminal event does not need to
be actually terminal and the approach can be used on repeatable events such
as non-fatal accidents, or spells of unemployment.

Censoring

It is not generally possible to obtain complete histories for all elements in a
study, either because the study is terminated before the event being investi-
gated has occurred, or because the individual concerned expericnces some
other type of Terminal Event first: for example if one is studying marital
breakdown two marriages in three will be terminated by death rather than
breakdown. This is known as (right) censoring, and is the reason why special
maximum likelihood methods are necessary for analysing survival-type
problems. Otherwise survival times could be analysed using ordinary
regression methods, perhaps after a transformation (e.g., logarithmic) to
compensate for the skewness of the distribution (Kalbfleisch & Prentice
1980).

However since censored observations tend to be longer, either treating
these observations as missing, or taking them as equal to the last recorded
occasion, will bias results (Tuma and Sorensen 1979). In any event it is
inefficient to treat a censored observation as “missing”, that is saying we
know nothing about, since we do have some information about it: namely
that it is at least as long as the time of censoring. In maximum likelihood

methods, the likelihood of a given set of observations is equal to the product
of

(a) the likelihood of cases with TEs (the product of the likelihood of
surviving until the time of the TE and the likelihood of having a TE at
that time) and

(b) the likelihood of the cases censored before reaching TEs (the likelihood
of survival until the time of censoring).

The development above has assumed that the mechanism for censoring may
be ignored on investigating the T.E. This is obviously rcasonable when the
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censoring process is independent of the process under investigation, for
example where censoring is random or where it takes place at a set time. It
is also sound on a wider class of situations, provided one is able to say that,
at any time the items withdrawn from risk are representative of the items at
risk, and in particular items cannot be censored because they appear to be
at an unusually high or low risk of failure. Somewht confusingly this wider
class is known as independent censoring, though it concludes censoring
processes which do depend on the failure process, such as type 11 censoring
(Cox & Oakes 1984) where a study is concluded after observing a pre-
specified number of events. This topic is discussed in Williams and Lagakos
(1977), Lagakos and Williams (1978) and Kalbfleisch and Mackay (1979).
This discussion has referred to right censoring in which it has proved
impossible to follow the individual under study up to the TE being studied.
Equally, also it frequently occurs that the process starts before observation
does. In right censoring, all that is known about the timing of a event is that
it had not occurred by a given time, while in left censoring all that we know
is that it has occurred before a particular time. An example in social sciences
would be where one collected employment status data at intervals, and a
recording of ““‘unemployed” for the first time at a data collection point would
mean that the respondent had become unemployed before that time (and
after the last collection time). Grouped data are thus in effect treated as if
they were right and left-censored at the ends of the time interval.

An allied concept is that of left rruncation where events occurring before
a given time point are not known to the researcher. Thus if one considered
the life-expectancy a cohort of people of a given age, those who had died
before that age would be ignored. Not all authors (see Tuma and Hannan
1984) make the distinction between left censoring and left truncation. There
has been less attention paid to left censoring and truncation in the literature,
though see Turnbull (1974), Tuma & Hannan (1984, 5.4.) Cox and Oakes
(1984, 11.6).

To compare different populations in their propensity to change state we
need to define some measures. Two basic definitions are the hazard function
and the survivor function: in many ways the central concept of all survival
analysis is the former.

Hazard function

We confine ourselves here to the sitution where there is only one type of
Terminal event and where only one such event can occur or where we only
consider the first occurrence (first passage time-see Flinn and Heckman
1982a): we generalise this later.
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Drop-out and the occurrence of terminal events will mean that the
numbers of those still left in the study will decrease over time. The hazard
function at any given time is the rate of change of state, given that the
individual in question has survived this far. Mathematically the hazard
function A(z) is defined as

<

h() = AIL'OTL P(1<T<g+ AI\T). )
In a real-life situation, rates are hypothetical quantities which cannot be
observed. At any instant an event either occurs or it does not: we can only
compare rates by observing a greater or lesser number of events over unit
of time. This is very simply conceptualized as (number of events) divided by
the (number at risk) divided by (length of the time period). Complications
arise in estimating the number at risk since this varies over the interval as
individuals die or drop out. In the absence of the precise information one
convention is to assume that those who are censored or experienced TEs
during the period are at risk for half of it. This leads to what is known as
the actuarial method (Berkson and Gage 1950, Elandt-Johnson and Johnson
1980) in which the hazard rate over the period (¢, t,,,) is given by

2q;
W+ 5’ @

where ¢g; is the proportion of terminal events in the interval, p, is the
proportion surviving, A, is the width of the interval,

Other definitions are possible, e.g., Allison (1982a), where all censorings
are assumed to occur at the end of the interval. Cox (1972) proposes a
special form of the hazard for discrete time points. While truly discrete time
points are rare this approach can be used on quasi-time series, such as the
length of a football team’s unbeaten run, and can also be a useful approxi-
mation to grouped continuous data.

When the time unit becomes small, all these conventions tend to the same
limit, namely that of the continuous time definition (1) above.

The hazard function is also referred to as mortality rate, force of mortality
or failure rate. Barlow & Proschan (1975) confusingly call it hazard rate and
reserve the term hazard function for another quantity.

Survivor function

When no change in the risk set occurs except due to terminal events then the
survivor function S(#) is simply the proportion of the original population
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remaining in the study at time 1. In practice the population will also lose
members over the time due to censoring. The actuarial estimate of the
survivor function is simply the product of (one minus the actuarial hazard
rates (2)) above for each time period. Thus the number at risk at the
beginning of each time period is adjusted for terminal events and dropouts
which occurred beforehand. A more recent and statistically preferable
method which does not require the data to be grouped into time periods is
the Product Limit or Kaplan-Meier method (Kaplan & Meier 1958).

While it may be of interest to examine the behavior over time of a
phenomenon in a population which is considered to be uniform, so many
imponderables influence human behaviour that in practice precise descrip-
tion of social processes does not arise, and social scientists tend to confine
their interest to more-less comparisons between broad groups. This is per-
formed using some form of covariance analysis.

V. Covariance analysis of censored survival data

If we wish to compare two groups, A and B, on how long it is before an event
occurs, one approach would be to compare the average or expected
lifetimes. We could posit, for example, that on average lifetimes in Group
A would be a constant number of times that in Group B or a constant plus
that in Group B. An alternative perspective would be to view the com-
parison as one of hazard rates, with the possibility that the hazard rate in
Group A could be a constant number of times that in group B, or that group
A’s rate was a constant plus that of group B. We deal with the various
approaches under the following headings:

(a) Additive models for survival time or hazard.

(b) Multiplicative models of survival time - Accelerated Failure Time
(AFT) models

(c) Multiplicative models of hazard - Proportion Hazards (PH) models.

(d) Other models.

(a) Additive models of survival time or hazard

Zippin and Armitage (1966) modelled the predicted survival time as a linear
function of risk and confounding variables. They assumed no censoring,
though the method could readily be adapted to deal with censored times. In

the case of constant hazard then this procedure is equivalent to modelling
1/4 additively.
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The additive risks model
A = a+ bX,+cX,+ ... 3)

has the attractive property that each sub-population makes an additive
contribution to the risk. However, additive models generally are unsatisfac-
tory in that they can give rise to inadmissible estimates, the Zippin and
Armitage model possibly giving rise to negative hazard rates. The program
RATE (Tuma 1980) can estimate additive models constraining results to be
non-negative. However, such a procedure is rather ad hoc and statisticians
generally prefer to use a multiplicative model which guarantees that esti-
mated survival times or hazard rates are positive.

(b) Accelerated failure time models

The multiplicative model for survival time can be extended to posit that the
expected proportion surviving at ¢, in group A is equal to the proportion
surviving in group B at ¢, where ¢, = kt,. Put more colloquially it is as if one
group were living faster than the other. This is the Accelerated Failure Time
(AFT) Model. In statistical terms this states that:

logT = a+ bX, +cX, + - cre 4o, )

where T = survival time, a, b, ¢ are constants to be estimated, X,, X, are
values of independent variable, ¢ is an error term of specified distribution.

This model has been used with an error distributed log-normally to study
lung cancer in uranium miners (Lundin et al. 1979) and with a log-gamma
error in the assessment of risk due to toxic environment substances (Rai &
van Ryzin 1979).

If all failure times are recorded, ordinary regression can be used, but
censoring requires the use of special methods. This model has been used in
the biomedical sciences, though seldom in the social sciences. However, it
could usefully be employed to model a situation in which different groups
accumulate some quality at different rates to reach the same threshold, for
example, saving for the deposit on a house or in learning theory. Cox (1972)
has shown that in a “random shocks” model under certain circumstances a
cumulative shock gives an AFT model while a single shock going over a
threshold corresponds to the PH model.

One drawback, however, is that the AFT model requires that the distri-
bution form of the error term be known, or at least estimable. This has
tended to draw researchers towards the proportional hazards model, which
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is less dependent on the precise distribution involved. This is not as much
of a restriction as one might imagine because of the extreme flexibility of the
PH model, particularly with time-varying covariates. In principle, some
non-parametric approach, comparable to the mass points techniques of
Heckman & Singer (1982) for the proportional hazards (see Section V11
below) would seem to be possible.

(¢) Proportional hazards
An alternative model, known as Proportional Hazards (PH), models the

hazard rather than the survival time as a log-linear function of independent
variables.

}'l([) = 10(’)*‘l’(x|)- (5)

If the X are not related to T then 1,(¢) and 4,(¢), the hazards in group 1 and
2 respectively are related thus:

L) _ X))
PNORRT0S)

K constant over time for (6)
constant covariates.

This property that the ratio of hazard functions remains constant over time
is known as proportional hazards. The adequacy of the proportional
hazards model can be checked by graphical methods (Kay 1977, Kalb-
fleisch & Prentice 1980). This model may be estimated by:

Maximum likelihood ML (fully parametric)
Partial likelihood PL (semi parametric)

(1) Maximum likelihood (fully parametric) approach for proportional
hazards

In some instances it may prove reasonable to assume a functional form for
the element A(¢) in the formula A,(¢) exp (BZ). Widely used for the hazard
are

Ay (1)

A Exponential

A() = Ao,”" Weibull.

Nelson (1972) and Kay (1977) describe graphical procedures for deciding
whether a number of particular functional forms are approprite. Nelson’s
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procedures involve the use of specialised types of graph paper with func-
tional scales, such as logarithmic, on either or both axes. The availability
of packages for data presentation means that it is simpler to ask the com-
puter plot these directly, for example to plot the Survival function S(z)
against log (7) rather than to plot S(r) against ¢ on semi-log graph paper.

However, it may turn out that the hazard is too irregular to fit with a
regular function, and in this case it may be desirable to assume a quite
arbitrary hazard function. This approach is the basis of the partial likeli-
hood or semi-parametric approach (Cox 1972, 1975).

(2) Semi-parametric approach for proportional hazards
Where no regular function fits readily the Cox regression approach (Cox
1972) gives a proportional hazards model

A1) = 2(1) exp (BZ), (M
Ao(1) arbitrary.

The elements of B give an estimate of log (relative risk). A clever argument

due to Cox (1972) means that the form of the basic hazard function A, is

irrelevant. If the ith element in the risk set fails at time ¢ then the conditional
probability of this, given that one element fails is

4oexp(BZ;)

Z Ay exp (BZ))’ ®)

where the summation is taken over all elements of the risk set, the arbitrary
element 4, cancelling out. The full likelihood of all the data may be written

Lik, = Pr[E, E,, ..., E; G, ... CJl, )
where E; contains the information about the ith terminal event at ¢, and C,

contains all information about censoring in the time interval {t,_,, 1,). This
can be factored to give:

d
Lik, = PHE|C] ] PrEIE,, ..., E_,,C,,...C]
i=2

d
*Pr(C, ][] Pr[CIE,, ..., E_,,C,,...C0 L. (10)
i=2
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The second half of this expression contains information about censorings.
Cox proposed that this should be discarded, and the resultant expression he
called partial likelihood (Cox 1972, 1975), for obvious reasons.

Note that this equal to the product of the conditional probabilities (8)
above.

This semi-parametric partial likelihood approach is of particular value in
the social sciences, where there is barely any reason to assume a particular
functional form. If Z does not depend on time, the only information needed
on times in this approach is their ordering. For large samples the partial
likelihood method is unbiased and nearly as efficient as using the full
likelihood provided that:

(a) B is not far from zero
(b) censoring is not strongly dependent on Z(1) &
(c) the covariates do not exhibit strong time trends.

For small samples the loss in practice from using the partial likelihood (PL)
is rather greater (Oakes 1977, Efron 1977) though the quality of PL esti-
mates is very high in samples of moderate size even when a high proportion
of the sample observations are censored (Caroll et al. 1978, Tuma 1982). In
fact such comparisons underestimate the efficiency of PL, since they assume
that the full maximum likelihood estimator is correctly specified. Where the
full maximum likelihood estimator is incorrectly specified then the PL
estimator is likely to perform better.

Non-distinct failure times

However, the use of this semi-parametric approach can give rise to technical
problems. Information on the timing of events is rarely collected with any
degree of precision. Much data on job and fertility histories is collected
retrospectively and one is doing well to get data accurate to the nearest
month. Unfortunately where times are tied Cox’s likelihood very rapidly
becomes exceedingly complex with increasing numbers of ties. Note that the
problem does not arise where the hazard function A,(t) is specified up to a
finite number of constants (i.e., is parametric).

The question of non-distinct failure times can be approached in a variety
of ways, depending on whether the times are viewed as (i) tied discrete, (ii)
tied continuous (iii) grouped continuous, or (iv) grouped discrete.

(i) Tied discrete times. Where times are discrete Cox (1972) defined the
hazard as:

h(i) = P(T<t+ 1T > 1) (11)
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and proposed a discrete logistic model

h(t, Z) hy (1)
—_ = Z) —2 12
ez - PTG 2
At time ¢, the conditional probability that items 4,4, . . . i, fail from the risk

set R is then

W) - . YG)
Y k) . k)

kes(jd)

where s(j, d) denotes the set of all samples of ¢ items from the set R.

This type of approach which involves conditioning out the unknown
hazard is known as conditional analysis. In practice of course applications
involving discrete times are rare, though it could be argued that a day
represented a natural quantum in the study of (say) employment or edu-
cation. In this case, there are structural factors (common school leaving
dates, jobs terminating at the end of a week or a month) which mean that
tied times are inevitable. However, this approach is frequently more relevant
to discrete quasi-time scales whose sole function is to order sequences of
discrete events, such a number of football matches constituting an unbeaten
run or even number of repeat purchase of a brand commodity (Amemiya
1981):

Conceptualising process as occurring in discrete time with a logistic
relationship between hazards however provides a convenient and easily
computed approximation to the grouped continuous model described under

(iii).

(i) Tied continuous failure times. In practice of course, tied continuous times
are rare, and could generally, at least in principle, be separated by a finer
recording of times. Medical investigations frequently record times to the
nearest day for this reason. The most realistic situation is generally to view
times as grouped continuous.

(iii) Grouped continuous failure times. In analysing events which are recorded
as having occured simultaneously, as in analysing anything else, it is
important to be clear how these can have arisen. The exigencies of data
collection generally mean that times are recorded to the nearest day, month
or even year. For example the (GB) National Child Development Study
measures employment history and family formation events by the month, in
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its fourth 23-year-old sweep, so that, with an attained sample size of 12 538,
there are inevitably many individuals whose recorded times are tied.

If the proportional hazards assumption holds and discounting censoring,
the hazard for the interval and for the group with covariates Z is given by

I — (1 = &) exp (B2), (14

where }, = I;—x’lo(“)d"* B can be estimated by setting C{E(t)} = o + BZ,
and where C is the complementary log-log transformation. Both this and
the logistic approximation discussed earlier can be expressed in the general
linear model form

Link {h(1)} = o + BZ + ¢, (15)

where link is either the logit function or the complementary log-log function
and ¢ is an error distribution (see McCullagh & Nelder 1983, Nelder &
Wedderburn 1972.)

The logit link is perhaps more familiar and comprehensible to social
science users, but the complementary log—log has the important advantage
that the coefficient g is independent of the length of the time interval, and
consequently the B thus estimated is unbiased for the continuous time
model. This property is not shared by the logistic link (Singer & Spilerman
1976) as not only the precise values of the f coefficient, but even the form
of the relationship can change as the length of the interval changes (Myers
et al. 1973). However, where the hazards in each interval are small the two
methods give very similar results (McCullagh & Nelder 1983, Hutchison
1987).

(iv) Grouped discrete failure times. These have not been widely treated, though
one example has been provided by Hutchison (1987). He postulates a
discrete time process with a function D(r) which he calls a dissatisfaction
function

D) = o+ PZ + ¢, (16)

and that a Terminal Event occurs if D(¢) = some threshold. If this relation
holds over a period containing a relatively large number of discrete time
units, then an extreme value distribution (Johnson & Kotz 1970) holds and
the parameters may be estimated by use of the complementary log-log as in
the grouped continuous model above. Note that (16) is Linear rather than
log-linear as compared to (12).
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Censoring in grouped or discrete data. So far in this discussion we have
ignored censoring. The majority of derivations involving non-distinct times
effectively still ignore censorings by arbitrarily deciding that censorings
occur uniformly before (Breslow 1972, Pierce et al. 1979) or uniformly after
(Cox & Oakes 1984) terminal events with the same recorded failure times.
If this is not considered satisfactory because of a large number of censorings,
some adjustment may be made, generally by subtracting 0.5 of the number
of censored observations from the risk set. (Thompson 1977, Holford 1976).
Cox & Oakes (1984) give a precise likelihood for the situation where
censorings and failures occure throughout the interval, and show that this
is equivalent, for small hazards, to the actuarial estimator referred to earlier
(Berkson & Gage 1950).

Underlying hazard function. Whereas the ML approach estimates both the
dependence of B on covariates and the underlying hazard 4,, the PL
approach conditions out A, so that it is not estimated. Various procedures
are available to estimate /,, the most widely used at present being that of
Breslow (1974).

(d) Other models

Diekman & Mitter (1984) have proposed that they describe as a Sickle
model to provide a realistic model of a process which starts at a low rate,
climbs rapidly and tails off more gradually.

This paper has covered the more straightforward applications of survival
analysis methodology. A companion paper, detailing with more elaborate
applications, and outlining some possible future lines of development, will
be published in the next issue of Quality and Quantity.
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Event history and survival analysis in the social sciences
11. Advanced applications and recent developments
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Abstract. A previous paper (Hutchison, 1988) in this journal has provided an introduction to
the basic concepts of survival and event history analysis, originally developed in medical
research, econometrics and engineering, and argued the case for their wider application in the
social sciences. This paper introduces some further complications that the researcher is likely
to meet, and offers some guidelines for handling problems that arise in applying such methods
to the highly complex social situations involved.
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L. Time-varying covariates

The description in Hutchison (1988) has envisaged independent variables
which remain constant over time. With the exception of a few characteristics
of the individual such as date of birth and, generally, sex, this is not a
reasonable assumption, and, fortunately, it is not one which is necessary for
methods of this kind to work.

In his original paper Cox (1972) assumed that the covariates varied over
time in the proportional hazards model. Indeed he allowed the inter-group
proportionality also to vary over time, though to make any sense of this, it
is necessary for the variation to follow some functional relationship, such as
linear, with time. While time-varying covariates differ conceptually depend-
ing on how they arise, there is relatively little difference in treatment. In
increasing order of complexity, we can consider:
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(1) changing environment — external covariates;

(2) changing status - independent internal covariates;

(3) complete history of the process to date. Cox & Oakes (1984, 8.1) put
forward a different classification of time dependent covariates, based
more on statistical properties, but we feel ours is perhaps more relevant
to social science users.

1. Changing environment. Frequently the circumstances in which a process
takes place will alter in ways that are effectively beyond the control of the
individual or unit concerned, or to which he or she is only marginal. For
example the government may change, or the unemployment rate could
increase. Other such “‘external” covariates could include the size of the
risk set or the number of terminal events in the group so far. These are
examples of evolutionary covariates - see (3) below.

2. Changing status. It can also happen that the status or characteristics of
an individual may change in a way that we feel could be a cause or
modifier of the terminal event, but not vice versa; or that the change in
status may be of a different nature from the TE. For example if we are
comparing the health over time of married and single people, or employed
and unemployed then not everyone will remain in the same status over
any substantial length of time. In this situation, when an individual
becomes married, he or she is transferred from the “‘single” risk set to the
“married”. Such a procedure of course takes no account of individual
continuities in unobserved heterogeneity, that is, an individual’s charac-
teristics that we cannot summarise from knowledge of measured covari-
ates such as (say) their sex, age, and social class. This topic is discussed
more fully in Section III below.

Another possibility is that statuses may be combined to form a com-
posite dependent variable: for example in studying economic activity for
women one possibility would be to treat marital status as a time-varying
covariate, but another possibility would be to decide that working while
married involves such different attitudes and commitments that it makes
better sense to view the outcome space as consisting of (say) the 4
situations:

(a) single working

(b) single non-working
(¢) married working

(d) married not working.
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3. Evolutionary covariates (alias the story so far). The two methods outlined
so far make a fairly clear distinction between cause and effect. An alter-
native view comes closer to a perspective in which all of an individual’s
experience so far is contained in his or her present state and can influence
the occurrence of a TE. Such evolutionary covariates can include the
external and independent internal covariates discussed earlier and also the
entire history of the process, including previous occurrences of the termi-
nal event. Thus in a study of unemployment the size of the risk set, the
number of times previously unemployed, or the duration of previous
unemployment could be included as covariates.

Handling time-varying covariates

The method of handling time-varying covariates depends on whether they
are considered continuous or categorical, and whether semi-parametric or
fully parametric approaches are used.

Of these the simplest is the semi-parametric approach with categorical
variables. Where an individual changes status, then he or she is simply
transferred from one risk set to another at the appropriate time. This is in
fact the equivalent of considering the individual as providing two (or more)
censored observations, the first right censored at the point of change and the
second left censored at the same point. Similarly this is how fully parametric
estimation can be treated, with the second (and subsequent) observations
representing the probability of surviving from the time of the change in the
covariate situation to the time of a terminal event or until censoring by
leaving the study or changing risk group. Some slight complications arise
with the accelerated failure time model since the effective time of left censor-
ing is dependent on the parameter B to be estimated, and so an iterative
procedure, such as the EM algorithm (Dempster et al., 1977), may be
required. Where there are a large number of observations of some rapidly
changing influence, as could occur where monthly or more frequent un-
employment figures are included in an analysis, then technical and other
problems may arise. As frequently occurs when maximum likelihood methods
are used for any but relatively simple applications, computing rapidly
becomes onerous. A number of possible simplications have been suggested to
reduce the computational burden. Covariates may fixed as having their values
at the start of a spell, or the spell may be broken up into a number of subspells
where the value is considered constant, or averaged over the spell. That these
short cuts are potentially hazardous is shown by Flinn & Heckman (1982)
and Heckman & Singer (1984) who analyse problems using these methods
and find that the results may be seriously biased compared with using a
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model where the exogenous variables are allowed to vary freely over the
spell. It is generally best to fit a model using all the known time variation
compatible with efficient use of the computer, or if possible, to represent the
time-variation by a functional form, for example f(r) = at, or

S = at + sin (by),

the latter possibly being appropriate as an approximation to seasonal fluc-
tuations. Tuma and Hannan (1984) suggest if there are a number of obser-
vations of a continuously-changing variable, one may represent the process
by a linear function of time between pairs of measurements. They show that
a variable which changes in this form gives an exponential form for the
corresponding rate.

Time-varying covariates and time dependency of hazard

Many factors which we cannot or do not observe change over time and
affect the rates. Thus individuals will mature over time, or cumulative
exposure to some toxic substances will build up. It may be that some
monotonic function of time will provide a reasonable working approxi-
mation. It is well to remember that it is unlikely that time in itself will be a
causal factor for many processes, but that it represents a development which
is generally closely related to time. Thus change in an underlying covariate
may be the “‘explanation” of a time dependent process.

Multiple time scales

Time can be used as a proxy for a number of processes - physical ageing,
progression of disease, work experience, pressure of social norms. We may
consider that more than one of these is important in a process, and this can
mean that where this occurs they are highly correlated. For example, we may
feel that both age and work experience, or age of mother and age of
youngest child affect a decision relating to female economic activity, or that
age of patient and length of time since contracting a disease will affect
mortality.

To handle such questions we can avail ourselves of the fact that time may
enter into the specification of the hazard process in two ways, firstly as the
ordering quantity ¢ in A(r) and secondly in time varying covariates Z( f(1)).
We write Z( f(1)) rather than Z(/) to indicate that it is not necessary for the
two times to be measured on the same or even proportionate scales. Indeed
with partial likelihood it is not necessary for time ¢ in h(1) to be measured
on a scale at all, merely that the observations be ordered.
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If one variable is considered to affect the process on a more rapid time-
scale or to be more central to the process then it makes sense to make that
the ordering variable and to include the other in some other way. For
example moving home is affected both by the time an individual has stayed
at that abode and by their age. We could stratify age into fairly broad bands
of five or ten years and include age as a covariate, either constant at its value
at the start of the period of residence, or as a time-varying covariate
changing as an individual changes from one band to another, though see the
section on Handling Time Varying Covariates above,

Another area investigated could be the time spent out of the labour force
by women while having a family. A very important determinant is the age
of youngest child and the researcher could include a time-varying covariate
to deal with this, restarting the clock with second or subsequent births. Some
care may be needed in interpreting time dependency since there may be a
close relationship between time scales: for example there is a linear depen-
dency between time out of the labour force and age of youngest child for
those women with only one child. In this the common sense of the statistician
is probably the best guide.

A different approach is that of Farewell & Cox (1979) who advocate using
more than one time scale and trying to interpret the weighted result.

II. Competing risks

The discussion so far has been nominally in terms of only one terminal event
destination, for example death or quitting a job, to quote two somewhat
disparate phenomena. This may be lumping together events which proceed
in quite different ways, such as deaths from different causes. In examining
deaths in a population we might wish to combine a factor dropping away
relatively quickly over time, for example to represent the effects of an
epidemic, together with a more gradually time-trended relationship repre-
senting the usual effects over time (Barlett, 1978; Pierce et al., 1979). This
would be principally useful if one were unable to distinguish between
different causes of death.

However, one may consider it of interest to distinguish between different
types of terminal events. A sociologist, investigating the process of leaving
a job, would consider that leaving for a promotion elsewhere is very
different, at least from the point of view of the worker, from being
sacked.

The methods in this section deal with the situation in which an individual
is prey to a number of possible types of terminal events, but can only
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experience one, or, equivalently, we only observe the first. The case where
an individual may be observed to experience more than one type of terminal
event is described in other sections.

A destination - specific hazard function 4,(f) can be defined for the vth
cause of death similarly to the general hazard h(r)

P, < T<1t,+ Al < T)](
A .

h() = Al—i}-(‘}l{

/f.(t) can be defined similarly. The destination-specific hazards h,(¢) may
be summed to give the general hazard #(r). (Prentice et al., 1978; Gail, 1975).

(a) Independent risks approach. The situation is described as one of compet-
ing risks (Cox & Oakes 1984). If the risks are independent then the
models may be estimated by treating first one destination as TE and
including the other destinations with censored observations and then
vice versa. We used the expression “‘nominally” at the start of this
section since our treatment has included censored observations. Censor-
ing, where the censoring process is independent of the risk, may be
considered as another destination and thus results about dependent or
independent censoring are applicable.

(b) Proportional hazard models. At the other end of the continuum one can
assume that

h(t) = o,h(1)

for all «. This is somewhat confusingly known as the proportional
hazards approach by analogy with the model for different groups on the
independent variable. The assumption of proportional hazards in the
dependent variable is conceptually the same as that of destination
independence (Davies, 1983), widely used in social sciences. The
assumption of destination independence may be used to divide model-
ling of a stochastic process into separately analysed subprocesses of
timing and outcome (Wrigley, 1980). Ginsberg (1978) has produced a
test for destination independence, refined by Davies (1983), which
involves testing the effect of constraining to equality some parameters in
a fully parametric representation of the process. Cox & Oakes (1984)
show how the assumption of dependent variable proportional hazards
may be tested in the semi-parametric model. Graphical methods as
outlined in the section of this paper on independent variable proportional
hazards are also applicable.
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Dependent failure times

Very little has been published on situations in between the two extremes of
proportional and completely independent hazards. Davies (1983) has given
an example where two hazards are both of the same (Weibull) form A, '
and the effect of constraining the constant x to be equal. Other examples are
given in Nadas (1970, 1971), David & Moeschberger (1978), Moeschberger
(1974) and Lagakos & Williams (1978).

In some instances the information on type of Terminal Event may not be
helpful. One possible example could be in a study of marital breakdown,
where the researcher has information on which partner petitioned for
divorce. It is quite conceivable that in many cases either of these processes,
rather than indicating the more dis-satisfied partner, would simply represent
an acknowledgement that the marriage was at an end, and that the decision
over which party would instigate proceedings would be a matter of con-
venience. In a situation of this type the soundest analysis strategy might well
be to group the two events together.

The discussion in this section generally has been in terms of a limited
range of destinations which can be described by a categorical variable equal-
ling 1 or O for the possible destination states. Cox and Oakes (1984) propose
that this could be extended to encompass real valued destination states
(e.g., length of time off sick when an individual is ill) or vector-valued
destinations: for example one might look at illnesses in a family with the
failure type being described by a vector combination of individual affected,
and type of illness.

1. Overdispersion and unobserved heterogeneity

The equations (12) earlier propose that Link (k) where A is the hazard, is a
linear function of certain background covariates. Obviously this cannot
entirely determine the duration till the occurrence of a TE of the individual.
The indeterminacy remaining is acknowledged in that the hazard is simply
the parameter driving a stochastic process which gives rise to a probability
distribution of times. However, one does not expect that everything relevant
about an individual would be known from (say) their age, sex and social
class. Yet this is effectively what is being said if these are the only covariates
used. The situation can be improved by increasing the information available,
either by a finer classification of age and or social class for example, or by
the inclusion of other covariates, such as years of education, income or
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measure of parental social status. However, one rapidly runs into problems
with numbers in cells, and still other covariates suggest themselves -
personality, qualifications, school attended and so on. The traditional
approach to this in social research has been to investigate the statistical
significance of such refinements in prediction of the dependent variable and
to stop when further refinement brings no statistically significant reduction
in some appropriate statistic, most recently the deviance. This of course
suffers from the drawback that one can only include data which is available.
Tautological though this may sound, it means that one cannot take account
of characteristics which have been inadequately measured, or completely
omitted. Further, the type of influencing factor that cannot readily be
recorded by the data collection instrument will also be omitted. This is
potentially a more serious problem, since researchers can tend to lose sight
of influences which they cannot assess.

Ignoring within-category differences can lead to misleading conclusions,
as a problem in migration theory will make clear. It has been observed that
the longer a unit (individual or household) has been staying in the same
place, the less likely it is to move during the next unit of time: this is
described as cumulative intertia (McGinnis, 1968). An alternative explana-
tion postulates heterogeneity in the population so that some individuals
are more likely to move at any time than are others. Consequently as time
goes by more of the former have already moved, and the population
increasingly consists of the stick-in-the-muds and thus of course moving
rates decrease. This argument is summarised somewhat heuristically here
but a more mathematical treatment is widely available, for example in Flinn
& Heckman (1982). A very much oversimplified version of this forms the
basis of the mover/stayer model of Goodman (1961). Davies & Pickles
(1985) show that this type of process gives rise to a spurious correlation
between exogenous and endogenous variables which biases the estimated
coefficients.

It is instructive to treat the topics of this section within the framework of
the General Linear Model (see e.g., McCullagh & Nelder, 1983), and
departures therefrom.

Applied to the proportional hazards survival model:

t is the time parameter

I1(¢) is the hazard at ¢

Y() is the observed number of TEs
n(t) is the size of the risk set

Z = {z;} are the covariates.
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Then the GLM may be stated as follows: y, ~ B(n,, I1,) the binomial
distribution with size n; and probability I1,

Link (I1}) = n, = o, + Z leﬂ's
J

where «, 8, are coefficients to be estimated and #; is the linear predictor. Link
(11,) is some function of I1;, for example the logistic

log <1 -I:Iiﬂ,-) = logit (I1,).

This model contains a stochastic element already in the form of Y. Note
however, that the binomial distribution is the distribution of scores from
trials with probability I'l; so it implies that all », elements are equal. Thus for
a given cell, the probability I1;, the linear predictor #; and the covariates Z,
are considered fixed. These constraints may be relaxed in the interests of a
more realistic representation of a process.

(i) The variance for binomial proportion I1; is n,I1,(1 — I1;) Where the
probabilities IT; of the individual elements vary, but the overall propor-
tion is I1, then the variance can be written in the form ¢°n,I1,(1 — I1,)
which can be handled using the concept of quasi-likelihood (Wedder-
burn, 1974).

Generally ¢? is great than 1 and this sitution is referred to as over-
dispersion. McCullagh and Nelder (1983) describe how ¢® may be
estimated.

(it) In an annual panel study of the labour force participation of married
women, Heckman & Willis (1977) proposed that individual participa-
tion was distributed according to a beta-binomial distribution with
population mean Il, and investigated how much participation rates
were correlated from year to year. See also Davies et al. (1982). The
beta-binomial was employed since it has a wide range of forms which
means that many situations can be modelled, and as the authors freely
admitted, for mathematical convenience.

(iii) The Heckman & Willis approach involves taking account of heterogen-
eity by including a random effect in I1,. A closer representation of the
process could involve a person-specific effect in the characteristics of the
individual, that is by including a random effect in the linear predictor #,

n = Z BZ; + & (19)

J
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or

n, = ( Z ﬂjZ,-j) *E;. (20)

Heckman & Willis (op cit) do in fact set up a model of the first type in their
economic-theoretic development but this is not continued in the statistical
model used.

Allison (1982b) distinguishes between what he refers to as external models
of the form

I, = link (n,) + ¢ 21
and internal models of the form
I, = link (n, + ¢) (22)

Flinn & Heckman (1982) develop an “internal” approach which does take
account of unobserved heterogeneity in the characteristics of the population.
The importance of allowing for unobserved heterogeneity is underlined by
three observations: firstly, Heckman & Borjas (1977) argue that most
heterogeneity is the result of unobserved components; secondly, that being
forced to be aware of the shortcomings of their models by including
unmeasured heterogeneity should induce a healthy humility in most social
theorists; thirdly, introducing an allowance for heterogeneity can alter quite
seriously the coefficient estimates for independent variables, and time depen-
dency of the hazards (Heckman & Singer, 1982). This last is quite surprising
given that intuitively one might merely have expected some dilution of the
effects (see also Allison, 1982). Davies & Pickles (1985) argue that this may be
due to correlation of omitted variables with exogenous or endogenous regres-
sors. It is also likely that the precise form of the error distribution changes
over time as the more extreme elements are more likely to experience TEs.

The situation here is in contrast with that in the ordinary least squares
models used in panel analysis of continuous outcomes. Unobserved
heterogeneity has received less attention here since the model states that

yi = BZ, + ¢, (23)

where effects due to population heterogeneity, unspecified causal mechan-
isms, sampling variation and measurement error in the dependent variable
combine to produce ¢;, assumed to be distributed N(0, 6?). The statistical
treatment in OLS thus takes heterogeneity into account without distinguish-
ing it from the other elements in the random term.
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Given that constant but heterogeneous hazards can mimic the effect of a
time dependent hazard, it is natural to ask whether these can be distin-
guished statistically. While Heckman & Singer (1984) give some conditions
for making such decisions, these are at present difficult to apply. One simple
rule is that heterogeneity which remains constant over time can only cause
an apparently decreasing rate. Thus an increasing observed hazard function
is incompatible with a constant rate, and while there may indeed be
heterogeneity with an increasing hazard, correcting for this will cause
further increase over time in the hazard. The matter is not particularly
relevant since the Markov assumption is simply one of mathematical con-
venience in most social sciences fields and there is no reason to expect a
constant hazard rate.

If there is considered to be unobserved heterogeneity the underlying
period hazard (probability of an event in the interval (1, ¢,,,]) may be
considered as varying over the population according to a distribution to be
estimated. Heckman & Singer (1984) give as examples the normal, log-
normal and the gamma distribution. These distributions are chosen partly
because they are flexible enough to cover a wide range of possible underlying
probability distributions and partly for mathematical convenience, and it is
frequently difficult to justify a precise distributional form. In particular,
discrete probability masses, for example, at P = 0 (those who never do
something) or at P = 1 are not well accommodated. This is one reason why
the “non-parametric” procedure proposed by Heckman & Singer (1982)
which does not assume any distribution for unobserved heterogeneity but
simply assumes that it may be satisfactorily approximated by a number of
mass points, is attractive.

The following equation gives an extension to the proportional hazard
model

link (B) = f() + g&(Z) + v, (24

where ¢; (density u(e)) is the unobserved heterogeneity, an individual specific
element, assumed constant over time; ¢ is time, Z, covariates, and functions
fand g and scalar y, are to be estimated. P is the probability of a terminal
event at time ¢. Since there are as many ¢ as there are individuals, further
information is needed on ¢;. This could be

(a) by means of restrictions so that ¢ has a specified functional form, or

(b) by assuming that its distribution is concentrated at a finite (and relatively
small) number of mass points or can be satisfactorily approximated by
a distribution of this form (Heckman & Singer, 1982).

i
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This is conceptually similar on the one hand to an extension of the mover/
stayer model to include more than two groups, and on the other hand to the
well known process of approximating the effect of a continuous independent
variable by grouping it into a number of categories.

Alternatively, (c) more information on the ¢ can come from further
episodes for the same individuals. (c) is considered later, in the section on
multievent histories.

One drawback to this approach is that in practice f(r) must be a para-
metric function for it to be possible to estimate from one episode the
heterogeneity term using the non-parametric methods outlined (Elbers &
Ridder, 1982). This unfortunately rules out the Cox (arbitrary hazard)
model unless it is possible to specify a parametric form for the error.

IV. Measurement error and latent variables

Measurement error refers to the situation where the measurement of a
variable is fallible and the observed value is considered to be the sum of the
true value plus an error term.

Fuller and his co-workers (Warren et al., 1974; Fuller & Hidiroglou, 1978)
have provided the theoretical background, and a program (SUPERCARP,
Hidiroglou et al., 1979) for handling the situation in panel studies where an
independent estimate is available of the measurement error variance, or the
reliability, which is the ratio of measurement error variance to total vari-
ance. Examples of the use of this approach include Hutchison (1980).

Joreskog and his co-workers (see e.g., Joreskog 1979) have provided
theory and program (LISREL-VI, SPSS inc. 1984) which deals with a
formally similar situation where one or more indicator variables are con-
sidered to be imperfect indicators of underlying or latent variables:

X, = L L + ¢
(25)
X, = ALL + ¢

This approach does not assume an independent estimate of measurement
error variance but rather obtains estimates for the ratio of the coefficients 4, ,
4 and of Var (Z,) and Var(X,), in addition to the panel regression coefficients,
from the structure of variance and covariances of the data. Examples of the
use of this techniques are given (e.g.) in Joreskog op cit.
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While formally similar, these two approaches use different conceptions of
error and may well give somewhat different results, in particular where the
measurement error on two indicators is correlated.

In survival-type analysis the situation is much less advanced. There is little
research which handles measurement of error in the independent variable or
latent variables (though see Prentice, 1982; Clayton, 1986). This may well be
because the basic theory for covariance analysis even with infallable vari-
ables in survival analysis is much more recent.

V. Event histories — series of events

In general so-called event history techniques are better described as event
analysis techniques. Writers, for example, Tuma (1980) et al., deal with
multiple events for an individual by making the unit of analysis the person-
spell rather than the person. Thus, if an individual was married, divorced,
and then remarried (and still remarried at the time of data collection) then
that individual would contribute 3 units to the analysis:

(1) time to divorce;
(2) time to remarriage;
(3) time remarried (censored).

This is somewhat unsatisfactory, as these methods ignore the connection
between the three units of analysis. This is not fatal, as it still gives rise to
unbiased estimates of beta parameters in (for example) the proportional
hazards model, provided that unobserved person-specific affects are uncor-
related with the independent variables, but since the observations are not
independent techniques are statistically inefficient and the estimates of
variance are biased.

This implies that one assumes that there is no carry-over from one event
to the next and one can consequently ignore the multiplicity of an event.
This type of approach has been widely used in engineering-type applications
(Barlow & Proschan, 1975) under the name of Renewal theory. However,
while such an approach is all right for the replacement of light bulbs, it is
in general not satisfactory for processes involving human beings, since it
fails to take account of ageing or learning processes which the individual has
experienced in the interim. Second marriages are not the same as first
marriages, nor do the births of second children share the same concomitant
circumstances as those of first children. To quote from Herodotus: “It is not
possible to step twice into the same river”.

One possibility might be to elaborate the modelling so that (say) second
marriages were analysed completely separately from first, and remarriages
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of divorced individuals were considered to be different from that of those
who had been widowed. However, such an approach could rapidly produce
a large number of small cells if there were a sequence of relevant events, and
particularly where there are a number of possible outcomes of any process.
Other methods will generally be required and we discuss this below.
Unobserved heterogeneity. Multiple spell data can assist in taking
account of unobserved hetergeneity. If one assumes that such heterogeneity
remains constant over spells, then one can use repeated event information
to partial out unobserved heterogeneity, in much the same way as the Cox
Partial Likelihood approach conditioned out the unknown base hazard
functions, and gain an estimate of true duration dependence. Of course, in
practice, this is unlikely: for example, individuals embarking on their second
marriage, after a divorce, would be expected to have either learned from or
to become embittered by the experience of breakdown. A more useful
approach in many instances might be autocorrelated heterogeneity:

at + 1) = k*a(t) + e(1), (26)

where e(f) is a random term, and a(f) is the measure of heterogeneity at
time ¢.

No authors use this precise model in event history analysis, though
Joreskog and his co-workers use it in panel-type data. Flinn & Heckman
(1982) describe a model for error with a certain similarity in the short run:

a(t)y = K*C + e(1). 27)

The lagged autocorrelation suggests a process of the individual hetero-
geneity being modified by events experienced. Strictly of course, an indi-
vidual’s entire history is relevant to their action or decisions, and any part
of it may be crucial, such as chance meetings in the street, resurgence of
long-forgotten childhood fears or ambitions. Nevertheless some simplifi-
cation is necessary if statistical methods are to be used at all.

Thus the researcher could assume that the probability of an event
occurring at a given time of or, more likely, its logit, was a linear combi-
nation of a number of factors and that (say) the same combination held for
those had and had never been unemployed, except for a dummy variable
indicating whether the individual had ever been unemployed. This assump-
tion could of course be tested against the alternative that a quite different
mechanism was involved by comparing the overall fit under the alternative
hypothesis. One also assumes that the quantities to be included in the model
gave a sufficient picture of the process. This is less easy to assess, but some
impression can be gained from the overall likelihood ratio.
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More generally, one can allow for the history of an individual by including
an independent variable relating to the occurrence of duration of previous
states (Flinn & Heckman, 1982): these are described, unsurprisingly, as
occurrence dependence and lagged duration dependence.

Taking account of an individual’s history can give rise to problems of
identification. Unobserved heterogeneity and history dependence can
produce similar effects. Thus, if we found that employees who had been
made redundant once were more likely to be made redundant again, we
could postulate that the least competent workers were those made redun-
dant, or that they worked in a less secure sector of the job market (hetero-
geneity) or that the experience of being made unemployed was such a blow
to their seif-esteem that they became less effective workers subsequently
(occurrence dependence) or that the time out of a job meant a lowering of
intellectual or physical capital, with a corresponding reduction in com-
petence (duration dependence). Similar considerations could apply to
accident proneness or to the remarriage of divorced individuals.

Individual heterogeneity at any given time, and the individual’s history so
far, are to some extent different sides of the same coin. On the one hand,
much of what renders an individual different must be due to his or her
cumulative experience, while on the other the heterogeneity which is not a
product of past experience may well have manifested itself in the events of
an individual’s history. Thus one would expect that including a number of
items of past history (where a large enough number of historical covariates
could be introduced) would have an effect virtually the same as formally
allowing for unobserved heterogeneity.

Which time scale? Particularly if a process occurs by moving through a
series of intermediate events it may be difficult to decide from where the
clock starts. Thus when Kay (1984) compares two cancer treatments con-
sidering the progression from incidents to remission, local or distant recur-
rence and death, he considers whether measuring the time from recurrence
or first occurrence is the more appropriate time scale. '

Other topics. In considering sequences of events it may be important to
consider the order of events: taking a deep breath and jumping into the
water is not the same as jumping into the water and taking a deep breath.
If one found that independent variables affecting (say) having a child were
different depending on whether the woman concerned was married before-
hand, then it would be reasonable to infer that this was an important
influence in investigating such an event. Similarly the order of events may
be an important consideration in deciding the effect of such events viewed
as historical independent variables: Students who marry before graduation
may well be less successful than those who complete the course first.
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VI. Associated failure processes

So far we have considered failure processes one at a time: if there is an
association between the failure times of two individuals, this is considered
to arise because of observed covariates in common. For example, if there
was a male-female difference in hazard, then the failure history of two
females taken at random could be expected to be more similar than that of
similar male—female pair. However, we now extend this to cover association
arising from unobserved heterogencity of proneness or ““frailty”. This would
arise in studies of breast cancer in sisters, or to give a social science example
since most of the theorical development has been medical, studies of the
occurrence of a particular behaviour where several pupils per class are
considered. There is an analogy here with the literature on multi-level
component analysis (Aitkin & Longford, 1985; Goldstein, 1986). Alter-
natively the association could arise between two different processes happen-
ing to the same individual as this would give rise to a much closer degree of
similarity than would be accounted for by measured covariates, such as age,
sex and social class. This type of approach where the association is caused
by unmeasured heterogeneity is sometimes described as a correlation-type
approach, in contrast to techniques in the previous section which may be
described as regression-type approaches where occurrence of one event
directly influences the occurrence of a second event (Armitage, 1985). Thus
in studies of recidivism, we would expect to find that individuals who had
committed one crime were more likely to commit a second and a “corre-
lation” explanation could suggest that the individuals concerned were
“criminal types” whereas a “‘regression” explanation could suggest that an
individual once convicted might be more likely to have a second conviction
because other opportunities were closed, because prison had hardened them
or because police were more likely to suspect an already committed individual.

Linear model

Given the focus in survival analysis on the proportional hazards model, it
is natural to allow for association in hazards. If (T,, T,) denotes the
bivariate survival time with hazard function (4,(¢), 4,(1)) then we assume
that

Alo) = 2@ exp (qo), k =1,2, (28)

where w is the unobserved common covariate for example, the effect of the
two processes occuring to the same individual, 4, (¢/w) are the hazard rates
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conditional on w, A3(¢) are unknown baseline hazard rates, different for each
of the two processes. As usual the covariate factor is in exponential form to
ensure that the resultant hazard must be positive. However, while the
process is proportional hazard conditional on w it is not proportional
hazards in general unconditionally, thus losing the desirable properties of
the PH model.

A convenient approach to analysis of the model (28) above comes from
integrating over time and taking logs to give

log < _L; A (5) dS) = a,w + log ( L; A2(s) ds> , (29)

or, where

Y, = 1og<j0‘ 22(s) ds>

have the linear functional relationship
Y, = aqo + ¢
Y, = a0+ g,

where ¢,, ¢, are independent random variables with (minus) extreme value
distributions

Pr(e > x) = exp (- exp (x)).

Note that we are considering different processes so a; and a, are not equal
and the transformations of T to Y, differ for each k. This model can be
made rather more general by assuming a different error distribution: for
example, a log-normal or log-logistic error distribution where Y = log T
would give an accelerated failure time distribution. This linear model
approach was used by Cuzick (1982) and Wu (1982).

An alternative model for correlation was put forward by Clayton (1978)
who required his model to fulfil these requirements:

(1) It should be relatively straightforward to estimate the association par-
ameter given censored observations for both covariates.

(ii) The effect of one variable on the other should be expressible as a
constant ratio of age specific rates.
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(ii1) The model should be symmetrical in the two variables. This gives the
model

Aot = 1) L(nls = 5)
Llslt > 1) Alls > 5)

9 b

This model is thus a specialisation of the proportional hazards model. It has
another interpretation in that

W(s, 1) = Sh(slt > t).h(tls > s,). (32)

Clayton & Cuzick (1985) state that this model is not valid for negative
association.

This this measure is an appropriate measure of association can be seen by
considering either form (30) or (31). For example the second form shows
that the probability (density) of the two events is less than the product
of the two probability (densities). There appears to be no nomenclature to
distinguish the two models but it may be helpful to describe them as the
common heterogeneity or linear model and the shared odds or Clayton
model, respectively.

Estimation of these models is somewhat more difficult then the individual
case, most models for both cases involving the estimation of the integrated
base hazard function

Ao(t) = [ Aa(0).

At least theoretically this is fairly straightforward where A(r) is a parametric
function. Clayton (1978) gives a likelihood for the Weibull and piecewise
exponential cases of the Clayton model while Wu (1982) indicates how
estimation may be carried out for the linear model.

When the basic hazard function is completely unknown, estimation of the
bivariate model is more difficult than for the univariate case estimated by
Cox regression. Rank tests asymptotically efficient for the linear model have
been derived by Cuzick (1982) and Wu (1982): these gives a test based on
generalised Savage scores. Fully efficient tests for both models based on
adjusted generalised Savage (log-rank) scores are given by Clayton & Cuzick
(1985) who state that the computations involved would appear to be con-
veniently carried out in GLIM. Other approaches are based on a generalis-
ation of the partial likelihood approach (Clayton 1978) and Kendall’s rank
test, but these have drawbacks (Oakes, 1982; Clayton & Cuzick, 1985).
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The Clayton and Cuzick approach however, while the most satisfactory
statistically, suffers from the drawback that it cannot handle negative
association. This means that further work is needed to model a failure
process which involves competition for resources, or where termination
arises as a result of near-exclusive processes, for example individual leaving
a job either because they were sacked or because they were promoted.

In some circumstances (Holt & Prentice, 1974; Woolsen & Lagenbruch,
1980) it is appropriate to assume that the basic hazard function is the same
for each member of the pair, and the hazard function for each pair is a
constant multiple for a basic hazard function

h(tlo) = a2’(1) exp (Bw) (33)

for the kth member of the /th pair (see Holt & Prentice, 1974; Clayton &
Cuzick, 1985). This model could apply in an educational experiment where
members of matched pairs are allocated at random to an old or new teaching
method and the time taken to master a particular task is compared.

VI1I. Discussion and conclusions

Recent developments in maximuin likelihood theory are enabling greater
flexibility and verisimilitude in the application of quantitative methods to
social processes. While the basic theory of maximum likelihood dates from
1929, it is only the dramatic increases in power and availability of computer
hardware and software that have enabled ML techniques to change from
statistical curiosities to central elements of statistical practice. One such set
of approaches is variously known as survival analysis, event history analysis
or reliability theory, depending on whether it is used in biomedical, social or
econometric, or engineering applications. To date it has been most widely
used in medicine, engineering and econometrics but there is wide scope for
application in the social sciences.

Survival and event history analysis have been developed to investigate
how long elements remain in a state, and in particular for use in the situation
where a sizeable proportion of the elements had not yet left the state: thus
doctors wanted to assess treatment for affecting sick people before they all
died, and engineers wanted to be able to estimate how long (say) lightbulbs
lasted without burning them all out.

In the social sciences correspondingly observations are incomplete if either
an individual leaves the state being investigated for some reason other than
that being investigated, or if he or she is surveyed before the event has
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occurred. These techniques are not confined to use where time is the dimen-
sion measuring the extent of a state. They could be used for such quasi-
timescales as number of games without defeat or even repeat purchases of
a commodity, but they are most generally used for time.

At present these methods are restricted to discrete states, though the
extension to continuous studies represents an obvious (and challenging)
development.

They enable researchers to exploit their data more fully by making use of
more accurate information on the time of occurrence of events than is
possible in panel-type approaches which simply record whether or not an
event has taken place. There are other possible reasons for prefering
survival-type (continuous time discrete event) approaches to panel-type
(discrete time continuous or discrete event). These include the lack of a
natural time unit within which respondents change status, the statistical
complication that data collected by extending the period between obser-
vations can frequently give a misleading picture of the underlying process,
or indeed not give a picture at all, referred to as the problems of identifi-
ability and embeddability (Singer & Spilerman, 1976). Also it is possible, by
using time-varying covariates, to take more accurate account of changing
circumstances over time than is possible in panel-type approaches.

Social and perhaps more especially econometric sciences have extended
the approaches and methods of engineering and biomedicine, the former by
emphasis on the unobserved heterogeneity of different individuals who
cannot to be fully classified by their age, sex and social class and the latter
by looking at repeatable events and sequences of different events in which
individual heterogeneity continues to exert an effect from one event to the
next.

Incomplete observations represent the main reason why it has proved
necessary to develop special methods for the analysis of survival data.
Maximum likelihood (ML) methods assume a hazard function of the form

h(t; Z) = hy(1) exp (BZ),

where hy(2) is assumed to be a standard function of ¢. The likelihood of the
sample is the product, over all observations, of the probability of lasting
until the time of censoring or termination and the probability of a terminal
event occurring at that time for the observations which were incomplete.
The maximum likelihood approach estimates the values of § and of the
parameters of h,(#) for which the sample likelihood is maximised. An
alternative approach, that of Partial Likelihood (PL), assumes that the
investigator is not particularly interested in the precise form of /,(r), but
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rather in comparing subgroups, and estimates f while partialling out 4,. In
this approach the likelihood to be maximised is the product over time
points of the conditional likelihood of the actual event occurring at each
time point, given that some event occurs.

There are two main models used, namely the proportional hazards (PH)
model and the accelerated failure time (AFT) model, both of which have
interpretations in terms of stochastic models of process - the thousand
natural shocks to which flesh is heir. AFT is a “last straw breaks the camel’s
back” model, which be fitted to the cumulation of random shocks, though
more purposive inputs such as learning processes are also covered. The other
model is the proportional hazards (PH) model. This can be envisaged as a
non-cumulative random shocks or **bolt from the blue’” model in which the
severity of the shock (or the susceptibility of the group) is related to the
characteristics of the group. The PH model is far more widely used, despite
the apparent relevance of AFT to many real-life situations, but this is less
of a drawback than might appear because of the versatility of the PH model.

Developments in survival/event analysis have been extremely rapid since
the early 1970’s, and it is likely that social science applications will continue
to extend. It is likely that more “‘realistic” models of processes will be
developed and it is possible that this may be tied in wich catastrophe theory
(Thom, 1975) for predicting sudden state changes. Applications should also
include attempts to view series of events as a whole, particularly taking
account of autocorrelated unmeasured heterogeneity, possibly introducing
the method of variance components and the eflect of non-normative histori-
cal influences (Baltes, 1979). Finally it may even prove possible to extend the
methods to deal with the behavior of dyads (see e.g. Dowdney et al., 1985;
Lincoln, 1984.)
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