
Missing data theory

George B. Ploubidis



▪ Selection bias, in the form of incomplete or missing data, is 

unavoidable in longitudinal surveys

▪ Smaller samples, incomplete histories, lower statistical power

▪ Threat to representativeness 

▪ Unbiased estimates cannot be obtained without properly 

addressing the implications of incompleteness

▪ Statistical methods available to exploit the richness of 

longitudinal data to address bias

Missing Data 



▪ A simple Directed Acyclic Graph (DAG)

▪ Y is an outcome

▪ X is an exposure (assumed complete/no missing)

▪ RY is  binary indicator with R = 1 denoting whether a 

respondent has a missing value on Y

Rubin’s framework 



Missing Completely At Random - MCAR



▪ Missing Completely At Random (MCAR): There are no 

systematic differences between the missing values and the 

observed values

▪ Missing At Random (MAR): Systematic differences between the 

missing values and the observed values can be explained by 

observed data

▪ Missing Not At Random (MNAR):Even after accounting for all 

observed information, differences remain between the missing 

values and the observed values

Rubin’s framework in the context of longitudinal surveys 



▪ Missing Completely At Random (MCAR): There are no 

systematic differences between the missing values and the 

observed values – Never holds in longitudinal surveys

▪ Missing At Random (MAR): Systematic differences between the 

missing values and the observed values can be explained by 

observed data 

▪ Missing Not At Random (MNAR):Even after accounting for all 

observed information, differences remain between the missing 

values and the observed values 

Rubin’s framework in the context of longitudinal surveys 



Missing At Random DAG



▪ Missing Completely At Random (MCAR): There are no 

systematic differences between the missing values and the 

observed values – Never holds in longitudinal surveys

▪ Missing At Random (MAR): Systematic differences between the 

missing values and the observed values can be explained by 

observed data – Which variables?

▪ Missing Not At Random (MNAR):Even after accounting for all 

observed information, differences remain between the missing 

values and the observed values 

Rubin’s framework in the context of longitudinal surveys 



Missing Not At Random - DAG



▪ Missing Completely At Random (MCAR): There are no 

systematic differences between the missing values and the 

observed values – Never holds in longitudinal surveys

▪ Missing At Random (MAR): Systematic differences between the 

missing values and the observed values can be explained by 

observed data – Which variables?

▪ Missing Not At Random (MNAR):Even after accounting for all 

observed information, differences remain between the missing 

values and the observed values – Strong distributional 

assumptions

Rubin’s framework in the context of longitudinal surveys 



▪ MCAR: No selection, sample is “representative”/balanced

▪ MAR: Observed variables account for selection. Given these, 

sample is representative/balanced

✓ Can observables restore/maintain representativeness?

✓ Does maximising the plausibility of MAR help with representativeness? 

▪ MNAR:  Observed variables do not account for selection 

(selection is due to unobservables too)

Rubin’s framework and representativeness 



▪ Representative of what? Generalisable where?

▪ Any study (RCT or observational, small or large) that publishes standard 

errors has a target population

▪ Assumptions of generalisability: are the results transportable to other 

populations? 

▪ Which populations? Are the assumptions reasonable?

▪ Missing data analysis is an attempt to restore sample representativeness 

to its target population  

Target population and sample representativeness 
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Birth 7 11 16 23 33 42 45 46 50 55
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The National Child Development Study (NCDS -1958 cohort)



Response in NCDS



Non response in NCDS

Types of non-

response
Wave 0 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 Wave 8 Wave 9

Age Birth 7 11 16 23 33 42 46 50 55

Non-contact 223 1,042 410 786 1,867 1,529 1,832 612 835 664

Not issued 920 542 271 0 0 0 1,415 4,248 3,553 4,698

Refusal 0 80 797 1,151 1,160 1,776 1,148 1,448 1,214 582

Other 

unproductive 0 173 202 295 838 1,399 263 109 332 491

Not issued -

emigrant 0 475 701 799 1,196 1,335 1,268 1,272 1,293 1,287

Not issued -

dead 0 821 840 873 960 1,050 1,200 1,324 1,460 1,503

Ineligible 0 0 0 0 0 0 13 11 81 0

Total 1,143 3,133 3,221 3,904 6,021 7,089 7,139 9,024 8,768 9,225



Sample size in the 1958 cohort as % of the original sample





Sample size in the 1958 cohort as % of the original sample



• MAR and MNAR largely untestable

• Non monotone missing data patterns are more likely to be MNAR and have 

implications for the use/derivation of response weights

• We assume that after introducing observables with a principled method (MI, 

FIML, Fully Bayesian, IPW, Linear Increments) our data are either MAR, or 

not far from being MAR, so bias is negligible

• Reasonable assumption

✓ Richness of longitudinal data

✓ MAR methods have been shown to perform well even when data are MNAR

• Arguably MAR methods more suitable than MNAR methods in rich 

longitudinal studies 

Missing data in longitudinal surveys



▪ A simple idea 

▪ Data driven approach to maximise the plausibility of the MAR assumption by 

exploiting the richness of longitudinal data

▪ In longitudinal surveys the information that maximises the plausibility of MAR is 

finite – the information that matters in practice can be at least approximated

• We can identify the variables that are associated with non response/attrition 

• Auxiliary variables – to be used in conjunction with variables in the substantive 

model/Model of Interest (MoI)

• Substantive interest in understanding the drivers of non response 

• Generational differences in the drivers of non-response

CLS Missing Data Strategy



How to turn MNAR into MAR (or at least attempt to)



▪ User guides for missing data analysis & list of auxiliary variables for users to

adapt to their analysis

▪ Working papers/Peer reviewed papers 

▪ Dynamic process, the results will be updated when new waves or other forms of 

data become available (administrative data for example)

▪ Training 

Outputs





Thank you for your attention!
G.Ploubidis@UCL.ac.uk

@GeorgePloubidis
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